期刊文献+

基于自适应模糊推理系统的柴油机故障诊断 被引量:8

Fault Diagnosis of Diesel Engine Based on ANFIS
下载PDF
导出
摘要 为解决柴油机故障诊断问题,采用自适应神经模糊推理系统(ANFIS)建立其故障诊断模型。利用减法聚类方法确定模型初始结构,并采用由梯度下降算法和最小二乘算法所组成的混合学习算法优化模型参数。经文中试验数据检验,所建模型故障识别值与实际值之间的最大误差为10.16%,最小误差为0.115%,平均误差为2.26%,识别精度达到了97.74%。仿真结果表明,与BP网络模型相比,该模型收敛速度快,拟合能力强且诊断识别精度高,能够有效识别柴油机故障。 In order to solve the fault diagnosis problem of diesel engine, Adaptive Neuro-Fuzzy inference system (ANFIS) was applied to build a fault diagnosis model of diesel engine. Subtractive clustering algorithm was used to confirm the original structure of fuzzy inference model, and a hybrid algorithm made up of the least-squares method and the backpropagation gradient descent method was adopted to optimize the model parameters. Through verification of the built diagnosis model with data of engine tests, it has been found that the maximal error between the identification and actual values of fault is 10.16%, the minimal error and the average error is respectively 0.115% and 2.26%, the recognition accuracy is 97.74%. Simulation results show that the fitting ability, convergence speed and recognition accuracy of ANFIS model are all superior to back propagation neural networks (BPNTV). So a contingent fault of diesel engine can be identified effectively.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5836-5839,共4页 Journal of System Simulation
基金 国家自然科学基金(50535010)
关键词 自适应神经模糊推理系统 柴油机 故障诊断 减法聚类 混合算法 adaptive-network-based fuzzy inference system diesel engine fault diagnosis subtractive clustering hybrid algorithm
  • 相关文献

参考文献9

二级参考文献20

  • 1周轶尘,彭勇.利用振动信号诊断发动机气门故障[J].内燃机工程,1989,10(1):26-31. 被引量:31
  • 2段礼祥,张来斌,王朝晖.基于波动法与模糊聚类的柴油机状态监测研究[J].机械强度,2005,27(5):567-570. 被引量:5
  • 3杨建国,周轶尘.船舶柴油机振动监测与故障诊断系统[J].内燃机工程,1996,17(3):45-51. 被引量:12
  • 4虞和济 侯广琳.故障诊断的专家系统[M].北京:冶金工业出版社,1990..
  • 5寇惠 付润兰 等.故障诊断的振动理论基础[M].冶金工业出版社,1988..
  • 6Jang J S R. Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference System [J]. IEEE Trans on Neural Networks, 1993, (1): 156-158.
  • 7Hint K J. Extending the Functional Equivalence of Radial Basis Function Network and Fuzzy Inference System [J]. IEEE Trans on Neural Networks, 1996, (3): 776-781.
  • 8Ronald R Yager and Dimitar P Filev. Approximate Clustering via the Mountain Method [J]. IEEE Trans on Systems, Man and Cybernetics, 1994, (8): 1274-1284.
  • 9Moody J, Darken C. Fast Learning in Networks of Locally-tuned Processing Units [J]. Neural Computation, 1989, (11): 281-294.
  • 10Jang J S R, Sun C T and E Mizutani. Neuro-Fuzzy and Soft Computing [M]. Prentice Hall, 1997.

共引文献41

同被引文献76

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部