期刊文献+

一种空间飞行器编队重组的轨道优化方法

Trajectory Planning Algorithm for Spacecraft Formation Reconfiguration
下载PDF
导出
摘要 现有的空间飞行器编队重组的轨道规划方法在求解能量最优策略时,都预先给定了变轨花费的时间,但没有说明给定的时间是怎么选择的。将空间飞行器主从编队重组的轨道规划视为一个多目标优化问题,提出了一种小生境进化算法。该方法通过使用特定的染色体表示方法和进化算子,能有效的搜索到飞行器编队重组轨道规划问题的时间-能量前沿,并引入等值分享法保证优秀个体具有较大的选中概率和前沿的多样性。该方法能同时提供多种变轨方案,编队飞行的任务制定者从而可以根据实际应用情况选择最合适的方案。仿真结果表明了该方法的正确性。 In exist algorithms of spacecraft formation reconfiguration, the end-time of maneuver is always given, but it is not clear how it is chosen. The trajectory planning for spacecraft formation reconfiguration was modeled as a Multi-objective Optimization Problem and a niched evolutionary algorithm was proposed to find the Time-Fuel Pareto optimal frontier With a problem specific real-value representation of candidate solutions and evolutionary operators, the approach could generate multiple solutions simultaneously. Higher selected probability of better individuals and the diversity of the frontier were guaranteed by equivalence class sharing. From these solutions, one could choose the best one based on actual application. The simulation results demonstrate the feasibility of the approach.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5947-5952,共6页 Journal of System Simulation
基金 国家自然科学基金(10577021)
关键词 空间飞行器 编队重组 轨道规划 进化算法 PARETO前沿 spacecraft formation reconfiguration trajectory planning evolutionary algorithm Pareto frontier
  • 相关文献

参考文献11

  • 1Bauer F, Yang Q, Kapila V, et al. Satellite formation flying using an innovative autonomous control system (AUTOCON) environment [C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997. USA: AIAA, 1997: 657-666.
  • 2Guang Yang, Qingsong Yang, Vikram Kapila, et al. Fuel optimal manoeuvres for multiple spacecraft formation reconfiguration using multi-agent optimization [J]. International Journal of Robust and Nonlinear Control (S 1049-8923), 2002, 12(2-3): 243-283.
  • 3Beichman C A. The terrestrial planet finder-the search for life-bearing planets around other stars [C]// Proceedings of Astronomical Interferometry Meeting, Kona, HI, March 20-24, 1998, Bellingham, 1998: 719-723.
  • 4Air Force Research Laboratory Space Vehicles Directorate. Tech Sat 21 factsheet page. [EB/OL]. [2007-05]. http://www.vs.afrl.af.mil/ factsheets/TechSat21 .html
  • 5Mark E. Campbell. Planning Algorithm for Multiple Satellite Clusters [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 2003, 26(5): 770-780.
  • 6Arthur Richards, Tom Schouwenaars, Jonathan P. How, et al. Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 2002, 25(4): 755-764.
  • 7M Tillerson, G Inalhan, J P How. Co-ordination and control of distributed spacecraft systems using convex optimization techniques [J]. International Journal of Robust and Nonlinear Control (S1049-8923), 2002, 12(2-3): 207-242.
  • 8M Milam, N Petit, R Murray. Constrained trajectory generation for micro-satellite formation flying [C]// Proceedings of AIAA Guidance, Navigation, and Control Conference, 2001. USA: AIAA, 2001.
  • 9C D'Souza. An optimal guidance law for formation flying and stationkeeping [C]// Proceedings of Guidance, Navigation, and Control Conference, Monterey, CA, 2002, Sponsored by AIAA. USA: AIAA, 2002.
  • 10J Horn, N Nafpliotis. Multiobjective optimization using the niched Pareto genetic algorithm. [R]//nliGAL Report NO.93005, July, 1993. Urbana, Champaign, USA: Illinois Genetic Algorithms Laboratory, University of Illinois, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部