摘要
设M^n是de Sitter空间S_p^(n+p)(c)中具有常数量曲率R(≤c)的完备类空子流形.得到了M^n关于其第二基本形式模长平方‖h‖~2的间隙性定理:如果n(c-R)≤‖h‖~2≤2(n-1c)^(1/2),那么,或者‖h‖~2=n(c-R)且M^n是全脐点子流形,或者‖h‖~2=2(n-1c)^(1/2)且M^n是全脐的或是双曲柱面S^(n-1)(c-tanh^2 r)×H^1(c-coth^2 r).
Let M^n be a complete space-like submanifold with constant scalar curvature R (≤c) in a de Sitter space Sp^n+p(c), h be the second fundamental form of M^n in sp^n+p(c). This paper obtains a gap property of the squared norm ||h||^2: if n(c-R) ≤||h||^2 ≤ 2√n-1c, then either ||h||^2 = n(c - R) and Mn is totally umbilical, or ||h||^2 = 2√n- 1c and M^n is totally umbilical or a hyperbolic cylinder S^n- 1 (c - tanh^2 r) × H^1(c - coth^2 r).
出处
《数学年刊(A辑)》
CSCD
北大核心
2008年第5期689-696,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10571129)部分资助的项目
西北师范大学重点学科(基础数学)基金资助的项目.
关键词
类空子流形
数量曲率
双曲柱面
全脐子流形
Space-like submanifold, Scalar curvature, Hyperbolic cylinder,Totally umbilical submanifold