期刊文献+

关于奇异非线性方程组求解的Euler方法的收敛性

Convergence Criteria of Euler's Method about the Singular Nonlinear Systems of Equations
下载PDF
导出
摘要 Banach空间中的非线性算子方程F(y)=0的求解是计算数学的理论基础,也是现代科学计算的核心问题之一.求解方程的算法比较重要的有Euler方法.该文在Lipschitz条件下,研究了求奇异非线性方程组的解的Euler方法的收敛问题,并给出了Euler迭代序列收敛于方程组解的判据. Solving nonlinear operator equation in Banach space is the core issue of modern computational mathematics and the theoretical basis of calculation-rrealizing. The primary means to solve such problem is Euler's method. This paper researches on the convergence problem of Euler's method to find the solutions of the singular nonlinear systems of equations under the Lipschitz condition, and presents the criterion of the iterative sequence converge to the solution of the equations.
作者 徐明
出处 《杭州师范大学学报(自然科学版)》 CAS 2008年第5期330-333,共4页 Journal of Hangzhou Normal University(Natural Science Edition)
关键词 奇异非线性方程组 Banach空间 LIPSCHITZ条件 NEWTON法 EULER方法 Moore—Penrose逆 收敛性 singular nonlinear systems of equations Banach space Lipschitz condition Newton's method Euler's method Moore-Penrose inverse convergence criteria
  • 相关文献

参考文献1

二级参考文献4

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部