期刊文献+

带有测量噪声的Ⅱ型T-S模糊建模 被引量:4

Type-2 T-S fuzzy modeling for the dynamic systems with measurement noise
下载PDF
导出
摘要 实际工业生产过程中,系统的数据带有测量噪声。Ⅱ型模糊集的二阶隶属度用来表征一阶隶属度的模糊度,这种模糊度的增加意味着处理不确定信息能力增加。因此,提出了一种基于Ⅱ型模糊集的T-S模糊建模方法来减少由噪声带来不确定信息的影响。首先采用改进的最小邻域算法对带有测量噪声的数据进行聚类,继而确定Ⅱ型模糊集的一阶隶属度,接着根据数据的聚类信息采用高斯混和模型得到二阶隶属度值,然后用正交最小二乘算法确定模糊模型的后件参数,最后通过仿真实验来验证该方法的有效性。 In actual industrial processes, the measurement data always contain noise. Therefore, this situation will affect the accuracy of modeling. Compared with the type-1 fuzzy sets, the membership functions in type-2 fuzzy sets include the primary membership function and the secondary membership function. They pro vide the additional degrees of freedom that make it possible to model uncertainties brought by the noises. In this paper, a type-2 T-S fuzzy model is presented to minimize the effect of measurement noises. Furthermore, the influence of the initial conditions is considered in the algorithm. The primary membership function is gained through an improved nearest neighborhood clustering algorithm, and the secondary membership function is determined through GMM based on the sufficient statistics. The orthogonal least-squared algorithm is used to identify the consequent of the fuzzy rules. Finally, the simulation results are compared with those obtained from a type-1 T-S fuzzy modeling results and the superiority of the proposed approach is highlighted.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1957-1961,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60604018 60474051)
关键词 Ⅱ型模糊逻辑系统 最小邻域算法 模糊C均值算法 高斯混合模型 EM算法 type 2 fuzzy logic system nearest-neighborhood clustering algorithm fuzzy c -means clustering algorithm GMM EM algorithm
  • 相关文献

参考文献10

  • 1Mendel J M, John R I. Type-2 fuzzy sets made simple[J].IEEE Trans. on Fuzzy System, 2002, 10(2) : 117 - 127.
  • 2Mendel J M. Advances in type-2 fuzzy sets and systems[J]. Information Sciences, 2007, 177(1): 84-110.
  • 3Sugeno M,Yasukawa T. A fuzzy-logic based approach to qualitative modeling[J]. IEEE Trans. on Fuzzy System, 1993, 1 (1) : 7 - 31.
  • 4Sepulveda R, Castillo O, Melin P. Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic[J]. Information Sciences, 2007, 177(10) : 2023 - 2048.
  • 5Karnik N N, Mendel J M. Operation on type-2 fuzzy sets[J]. Fuzzy Sets and System, 2001, 122:327 - 348.
  • 6Fazel Zarandi M H, Turksen I B. Type-2 modeling for desulphurization of steel process[J]. Expert Systems with Applications, 2007, 32: 157-171.
  • 7Ordonez C, Omiecinski E. FREM: fast and robust EM clustering for large data sets[C]//Proceedings of the 11th International Conference on Information and Knowledge Management, 2002:590-599.
  • 8贾立,俞金寿.神经模糊系统中模糊规则的优选[J].控制与决策,2002,17(3):306-309. 被引量:6
  • 9王梦灵,侍洪波.基于改进的最小邻域算法的模糊神经网络[C]∥第23届中国控制会议,2004:293-297.
  • 10Nie J H, Loh A P, Hang C C. Modeling pH neutralization processes using fuzzy-neural approaches[J]. Fuzzy Sets and Systems, 1996, 78(1): 5 -22.

二级参考文献11

  • 1Yan Shi, Masaharu Miaumoto. A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules[J]. Fuzzy Sets and Systems,2000,112:99-116.
  • 2Mauricio Figueiredo, Fernando Gomide. Design of fuzzy systems using neurofuzzy networks[J]. IEEE Trans on Neural Networks,1999,10(4):815-827.
  • 3Wang L X, Mendel J M. Generating fuzzy rules by learning from examples[J]. IEEE Trans on Systems, Man and Cybernet,1992,22(6):1414-1422.
  • 4Milligan G W, Cooper M C. An examination of procedure for detecting the number of clusters in a data set[J]. Psychometrika,1985,(50):159-179.
  • 5Michio Sugeno, Takahiro Yasukawa. A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Trans on Fuzzy Systems,1993,1(1):7-31.
  • 6D E Gustafson, W C Kessel. Fuzzy clustering with a fuzzy covariance matrix[A]. Proc IEEE Int Conf on Fuzzy Systems[C]. San Diego,1979.761-766.
  • 7A F Gomez-Skarmeta, M Delgado, M A Vila. About the use of fuzzy clustering techniques forfuzzy model identification[J]. Fuzzy Sets and Systems,1999,(106):179-188.
  • 8J C Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum,1981.
  • 9D A Linkens, Min-You Chen. Input selection and partition validation for fuzzy modeling using neural network[J]. Fuzzy Sets and Systems,1999,(107):299-308.
  • 10Lin C T, Lee C S G. Neural-network-based fuzzy logic control and decision system[J]. IEEE Trans on Computer,1991,40(12):1320-1336.

共引文献5

同被引文献16

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部