期刊文献+

时滞Markov跳变BAM神经网络的鲁棒稳定性 被引量:1

Robust stability of delayed Markov jumping BAM neural networks
下载PDF
导出
摘要 针对一类具有Markov跳变参数的时滞双向联想记忆(BAM)神经网络,研究了其在系统参数不确定情况下的鲁棒稳定性。在不要求连接权矩阵的对称性和激励函数的可微性与单调性的情况下,通过构造适当的Lyapunov泛函得到了此类神经网络均方鲁棒稳定的充分条件。该条件考虑了时滞Markov跳变神经网络中参数的不确定性,改进了现有文献中的关于时滞Markov跳变神经网络的稳定性条件,所得结果以线性矩阵不等式(LMI)的形式给出。最后,通过实例仿真验证了所得结论的有效性。 The robust stability for a class of delayed bidirectional associative memory neural networks with Markovian jumping parameters is investigated. Without assuming the differentiability and monotonicity of the activation functions and any symmetry of interconneetion matrices, some sufficient conditions are proposed for the robust stability of the given neural networks by constructing suitable Lyapunov functional. The given results are derived in terms of linear matrix inequalities and improve the conclusion and the method existed in the literature. Finally, a numerical example is provided to illustrate the effectiveness of the theoretical results.
作者 高明 崔宝同
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1981-1985,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60674026) 教育部科学技术研究重点项目基金(107058)资助课题
关键词 双向联想记忆神经网络 鲁棒稳定 LYAPUNOV泛函 MARKOV跳变 bidirectional associative memory neural network robust stability Lyapunov functional Markov jumping
  • 相关文献

参考文献14

  • 1Kosko B. Adaptive bi-directional associative memories[J]. Appl. Opt.. 1987,26: 4947-4960.
  • 2Yuan K, Cao JD. Li HX. Robust stability of switched Cohen- Grossberg neural networks with mixed time-varying delays[J]. IEEE Trans. on Syst. Man Cybern. - Part B, 2006,36 (6) : 1356 - 1363.
  • 3Rong LB. LMI-based criteria for robust stability of Cohen-Grossberg neural networks with delay[J]. Physics Letters A, 2005,339: 63-73.
  • 4Xu SY, Lam J, Ho DWC, et al. Improved global robust asymptotic stability criteria for delayed cellular neural networks [J]. IEEE Trans. on Syst. Man Cybern. , 2005,35(6) : 1317 - 1321.
  • 5Cao JD, Wang J. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Trans. on Circuits Syst. I, 2005,52(2): 417-426.
  • 6Li CD, Liao XF. Global robust stability criteria for interval delayed neural networks via an LMI approach[J].IEEE Trans. on Circuits Syst. II, 2006,53(9) : 901 - 905.
  • 7Krasovskii NM, Lidskii EA. Analytical design of controllers in systems with random attributes[J]. Automation and Remote Control, 1961,22: 1021 - 2025.
  • 8Shu Z, Lam J, Xu SY. Robust stabilization of Markovian delay systems with delay-dependent exponential estimates[J]. Automatica, 2006,42:2001 - 2008.
  • 9Mao X. Exponential stability of stochastic delay interval systems with markovian switching[J]. IEEE Trans. on Autom. Control, 2002,47(10) : 1604 - 1612.
  • 10Wang ZD, Liu YR, Yu L, et al. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters[J]. Physics Letters A, 2006,356:346 - 352.

同被引文献12

  • 1文武,杨汉生,徐军,钟守铭.随机型细胞神经网络的稳定性[J].电子科技大学学报,2005,34(5):700-702. 被引量:1
  • 2KWON O M, PARK J H. Improved delay dependent stability criterion for neural networks with time-varying delays[J]. Physic Letter A, 2009. 373: 529-535.
  • 3Liu L P, Han Z Z, Li W L. Global stability analysis of interval neural networks with discrete and distributed delays of neutral type[J], Expert System and Applications. 2009, 36: 7328-7331.
  • 4Wu H Q. Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations[J]. Nonlinear Analysis: Real World Applications, 2009. 4(8): 9297-2306.
  • 5Liu Y R. Wang Z D. Liu X H. Robust stability of discrete-time stochastic neural networks with time-varying delays[J], Ncurocomputing, 2008, 71: 823-833.
  • 6Liu Y R, et al. Discrete- time recurrent neural networks with time varying delays: Exponential stability analysis[J]. Physics Letter A, 2007, 362: 480-488.
  • 7Song Q K, Wang Z D. A delay-dependent LMI approach to dynamics analysis of discrete-time rccurrent neural networks with time -varying delays[J]. Physics Letter A, 2007, 368:134 -145.
  • 8Zhang B Y, Xu S Y. Zuo Y. Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time- varying delays[J]. Neurocomputing, 2008.72: 321-330.
  • 9Song C W, et al. A new approach to stability analysis of discrete-time recurrent neural networks with time-varying delay[J].Neurocomputing(2009),doi:10.1016/j.neucom,2008.
  • 10Yu J J, Zhang K J, Fei S M. Exponential stability criteria for discrete-time recurrent neural networks with time- varying delay[J]. Nonlinear Analysis : Real World Applications (2008), doi: 10. 1016/j. no nrwa. 2008.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部