期刊文献+

矩阵最小奇异值下界的估计 被引量:3

LOWER BOUNDS FOR THE SMALLEST SINGULAR VALUE OF MATRICES
原文传递
导出
摘要 In this paper, we study lower bounds for the smallest singular value of matrices by using the technology of block matrices and the properties of H-matrix. The results obtained are better than those in [1, 2], etc. In this paper, we study lower bounds for the smallest singular value of matrices by using the technology of block matrices and the properties of H-matrix. The results obtained are better than those in [1, 2], etc.
出处 《计算数学》 CSCD 北大核心 1997年第4期359-364,共6页 Mathematica Numerica Sinica
  • 相关文献

参考文献4

  • 1黄廷祝,游兆永.矩阵的G-分块对角占优性[J].工程数学学报,1993,10(3):75-80. 被引量:11
  • 2Qi L,Linear Algebr Its Appl,1984年,56卷,105页
  • 3游兆永,西安交通大学学报,1984年,3期,123页
  • 4游兆永,非奇M矩阵,1983年

二级参考文献3

共引文献10

同被引文献11

  • 1黄廷祝,游兆永.矩阵最小奇异值的下界[J].工程数学学报,1994,11(2):110-112. 被引量:2
  • 2Varah J M.A lower bound for the smallest singular values[J].Linear Algebra Appl.,1975,11:3-5.
  • 3Qi L.Some simple estimates for singular values of a matrlx[J].Linear Algebra Appl.,1984,56:101-119.
  • 4Johnson C R.A Gersgorin-type lower bound for the smallest singular values[J].Linear Algebra Appl.,1989,112:1-7.
  • 5Carlson D,Varga R.Minimal G-functions[J].Linear Algebra Appl.,1973,6:97-117.
  • 6VARAH J M. A lower bound for the smallest singular value[ J ]. Linear Algebra, 1975 (2) :3-5.
  • 7JOHNSON C R. A Gersgorin-type lower bound for the smallest singular value [ J ]. Linear Algebra Appl, 1989, 112:1-7.
  • 8LI H B, HUANG T ZH, LIU X P, et al. Singularity,Wielandt' s lemma and singular values[J]. J Comput Appl Math,2010, 234 : 2943-2952.
  • 9佟文廷.广义正定矩阵[J].数学学报, 1984,27:801-807.
  • 10夏长富.矩阵正定性的进一步推广[J].数学研究与评论,1988,8(4):499-504.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部