摘要
Let G be a non-monoidal group, E be a normal subsemigroup of G such that E 2=E and 1 G∈/ E. Then we can define a partial order in G by setting E as the positive cone, and G becomes a partially ordered group. Then we can study both the group G and power group Г on G with identity E by the order. The structure of G is clear if the order is maximal and the power group Г on G can be expanded to be of quasi-quotient type if G is lattice ordered.
设G为非monoidal群,E是它的正规子集,满足E2=E并且1G∈/E.利用E作为正锥,可以在G上定义一个偏序,并且G成为一个偏序群.这样就可以利用这个序关系同时研究群G以及G上的以E为单位元的幂群.当E是极大子半群时,得到G的一个结构定理;在G是格序群的条件下,G上的幂群Γ可以膨胀为一个拟商群.