摘要
本文主要研究具有κ-Lipschtz和η强单调性质的经典变分不等式问题,通过几个基本性质和Hilbert空间的性质给出了一类松弛混合最速下降算法,并且证明了该算法的强收敛性。
This paper is the research of the variational inequality with a Lipschitzi and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space. The modified and relaxed hybrid steepest-descent methods is introduced based on some fundamental prop- erties and the properties of the real Hilbert space and the minds of Gauss-Seidel methods. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.
出处
《世界科技研究与发展》
CSCD
2008年第5期631-635,共5页
World Sci-Tech R&D
基金
中国博士后科学基金(20070420221)
中国民航飞行学院青年基金(Q2007-34)
关键词
松弛混合最速下降法
变分不等式问题
强收敛
非扩张影射
HILBERT空间
投影收缩算法
variational inequalities
relaxed hybrid steepest descent method
strong convergence
nonexpansive mapping
Hilbert space
the projection contraction method