期刊文献+

变分不等式的修正松弛混合最速下降法 被引量:1

The Modified and Relaxed Hybrid Steepest-descent Methods for Variational Inequalities
原文传递
导出
摘要 本文主要研究具有κ-Lipschtz和η强单调性质的经典变分不等式问题,通过几个基本性质和Hilbert空间的性质给出了一类松弛混合最速下降算法,并且证明了该算法的强收敛性。 This paper is the research of the variational inequality with a Lipschitzi and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space. The modified and relaxed hybrid steepest-descent methods is introduced based on some fundamental prop- erties and the properties of the real Hilbert space and the minds of Gauss-Seidel methods. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.
出处 《世界科技研究与发展》 CSCD 2008年第5期631-635,共5页 World Sci-Tech R&D
基金 中国博士后科学基金(20070420221) 中国民航飞行学院青年基金(Q2007-34)
关键词 松弛混合最速下降法 变分不等式问题 强收敛 非扩张影射 HILBERT空间 投影收缩算法 variational inequalities relaxed hybrid steepest descent method strong convergence nonexpansive mapping Hilbert space the projection contraction method
  • 相关文献

参考文献2

二级参考文献20

  • 1He B,Appl Math Opti,1992年,25卷,247页
  • 2He B,Numer Math,1992年,61卷,73页
  • 3孙德锋,1992年
  • 4He B,Shu Xue Banian Kan,1989年,6卷,4页
  • 5Pang J S,Math Prog,1982年,24卷,284页
  • 6Kinderlehrer D,Stampacchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:Academic Press,1980.
  • 7Glowinski R.Numerical Methods for Nonlinear Variational Problems[M].New York:Springer,1984.
  • 8Jaillet P,Lamberton D,Lapeyre B.Variational inequalities and the pricing of American options[J].Acta Applicandae Mathematicae,1990,21(2):263-289.
  • 9Konnov I.Combined Relaxation Methods for Variational Inequalities[M].Berlin:Springer,2001.
  • 10Oden J T.Qualitative Methods on Nonlinear Mechanics[M].New Jersey:Prentice-Hall,Engiewood Cliffs,1986.

共引文献19

同被引文献19

  • 1何炳生.论求解单调变分不等式的一些投影收缩算法[J].计算数学,1996,18(1):54-60. 被引量:20
  • 2丁协平,林炎诚,姚任之.解变分不等式的三步松弛混合最速下降法[J].应用数学和力学,2007,28(8):921-928. 被引量:8
  • 3P T Patrick, J S Pang. Finite-Dimensional Variational Inequality and Nonlinear Complmentarity problems : A survey of theory,algorithms and applications [J]. Mathematical Programming, 1998, 48, 162-220.
  • 4F Facchinei, J S Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. Ⅰ and Ⅱ [M]. Springer Series in Operations Research. Springer Yedag, New York, 2003.
  • 5M Li, H Shao, B S He. An inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities [J]. Mathematical Methods of Operations Research, 2007, 66(2), 183-201.
  • 6B S He, "L Z Liao, X Wang. Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods, Comput. Optim. Appl., 51(2012), 649-679.
  • 7N J Huang, J Li, S Y Wu. Optimality Conditions for Vector Optimization Problems [J].Jourual of Optimization Theory and Applications, 2009, 142, 323-342.
  • 8X P Ding. Predictor-Corrector Iterative Algorithms for Solving Nonlinear Mixed Variational-like Inequalities,四川师范大学学报(自然科学版),2003,26(1),1-5.
  • 9M Li, A Bnouhachem. A modified inexact operator splitting method for monotone variational inequalities[J], J Glob Optim, 2008, 41,417-426.
  • 10M Seetharam, G Yoon Song. On semidefinite complementarity problems[J]. Mathematical Programming Series A, 2000, 88, 575-587.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部