期刊文献+

基于多agent系统的医学图像进化分割算法的研究 被引量:3

Evolutional algorithm of medical image segmentation based on a multi-agent system
下载PDF
导出
摘要 在进行医学图像分析时,很多研究对象(如大脑、心脏等)在图像中并没有明显的边界,属于自然纹理图像,不同组织间也没有清晰的分界线,在这种情况下,图像分割的任务非常困难.本文基于多Agent思想提出了进化分割算法.该算法将Agent设计为具有4种行为的计算实体,它驻留在医学图像的二维网格中,利用先验知识指导其行为的演化.通过在人脑核磁共振(magnetic resonance,MR)图像分割和异常脑细胞的识别实验,与最大似然(maximum likelihood,ML)分割和构形梯度平方残差(conjugate gradient square,CGS)分割比较,本文的方法更适合临床. Many research objects (such as human brain, heart and others) have no obvious brim. When we analyse medical image, it is a natural texture image. There is no clear boundary between different organizations. An evolutional algorithm of medicine image segmentation based on the multi-agent system was proposed in this paper. The agent is designed to be distributed calculation entities of the four entities of the calculation of the distribution in algorithm. It exists in the medical image in the two-dimensional grid, using the priori knowledge to guide its evolution. Through MR image segmentation of the human brain and the identification experiment of abnormal brain cells, compared with maximum likelihood segmentation and conjugate gradient square segmentation, our method is more suitable for clinical application.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期503-511,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60702056) 江苏省重点科技攻关项目(9BE2004093)
关键词 多Agent系统(multi-agent system MAS) 医学图像 图像分割 multi agent system, medical image,image segmentation
  • 相关文献

参考文献12

  • 1罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003.1-2.
  • 2Sivagaminathan R K, Ramakrishnan S. A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Systems with Applications, 2006, 121: 134-146.
  • 3周付根,刘文艳,周孝宽.基于数据融合的脑组织图像分割[J].生物医学工程学杂志,2008,25(1):186-190. 被引量:2
  • 4毛心军.面向主体的软件开发.北京:清华大学出版社,2005,373-413.
  • 5俞春,马骞,马晓星,吕建.一种面向体系结构的软件系统自适应机制[J].南京大学学报(自然科学版),2006,42(2):120-130. 被引量:15
  • 6Liu Jiming.多智能体原理与技术,北京:清华大学出版社,2003.
  • 7Edouard D, Jean-Jacques M, Yann J. Coopera tive agents society organized as an irregular pyr amid: A mammography segmentation appplication. Pattern Recognition Letters, 2003 (24): 2435-2445.
  • 8齐敏,邓林,弋丹,宣杭,郝重阳.灰关联空间中基于最大熵阈值的医学彩色图像分割算法[J].中国科学技术大学学报,2007,37(12):1543-1545. 被引量:2
  • 9Cocosco C A, Kollokian V, Kwan R K S, et al.Brainweb: Online interface to a 3DMRI simulated brain database, http://www. bic. mni.mcgill. ca/brainweb. 2006-06 12/2006-10-21.
  • 10Barnard K, Cardei V, Funt B. A comparison of computational color constancy algorithms-part : Methodology and experiments with synthesized data. IEEE Transactions on Image Processing, 2002,11(9): 972-983.

二级参考文献40

共引文献40

同被引文献38

  • 1程显毅,陈小波.基于多Agent的模式识别框[J].智能系统学报,2006,1(2):89-93. 被引量:1
  • 2王科俊,郭庆昌.基于粒子群优化算法和改进的Snake模型的图像分割算法[J].智能系统学报,2007,2(1):53-58. 被引量:9
  • 3杨立才,赵莉娜,吴晓晴.基于蚁群算法的模糊C均值聚类医学图像分割[J].山东大学学报(工学版),2007,37(3):51-54. 被引量:18
  • 4CHENG Xianyi,HAN Lanjun,MA Shouming.Design and realization of medical image nonrigid matching algorithm[C]//Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications.Jinan,China,2006:497-501.
  • 5黄国瑞 王绪法 高宪斌.基于方向信息素扩散的蚁群优化算法.电子学报,2006,15(3):447-450.
  • 6陈小波,程显毅.一种基于MAS的自适应图像分割方法[J].智能系统学报,2007,2(4):80-85. 被引量:5
  • 7Seljuq U, Hussain R. Synthetic aperture radar (SAR) image segmentation by fuzzy c-means clustering teclmique wilh threshol- ding for iceberg images [J]. Computational Ecology and Soft- ware, 2014, 4(2) : 129-134.
  • 8Ranganath H S, Bhatnagar A. Image segmentation using two-lay- er pulse coupled neural network with inhibitory linking field [J]. International Journal on Computing, 2011, 1 ( 2 ) : 29-34. [DOI: 10.5176 2010-2283 1.2. 35].
  • 9Hanbay K, Talu M F. Segmentation of SAR images using im- proved artificial bee colony algorithm and neutrosuphic set [ J ]. Applied Soft Computing, 2014, 21 (8): 433-443. [ DOI: 10. 1016/j. asoc. 2014.04. 008].
  • 10Wang Y, Li Y, Zhao Q H. Segmentation of high-resolution SAR image with unknown number of classes based on regular tessella- tion and RJMCMC algorithms [ J ]. International Journal of Re- mote Sensing, 2015, 36 (5) : 1290-1306. [DOI: 10. 1080/ 01431161. 2015. 1009655].

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部