摘要
研究了由N-1个等比值双基线系统组成的N基线测向系统的相位解模糊算法。对每个双基线系统(Pnλ20,Pn+1λ20)在(-p/2,p/2),(-q/2,q/2)范围内进行一维整数搜索,寻找出一组相位模糊解(k0n,l0n),根据二元一次不定方程,得到该双基线系统的模糊解,解的组数为Pn,Pn+1的最大公约数(Greatest common divisor,GCD),然后寻找由(P1λ20,P2λ20,P3λ30)构成的三基线系统的相位模糊解,解的组数为P1,P2和P3的最大公约数。以此类推,可得N基线系统的相位模糊解,如P1,P2,…,PN的最大公约数为1,那么就可得到惟一解,实现相位无模糊。该算法的计算量小,便于工程实现,仿真结果表明了算法的有效性。
The unwrapping phase ambiguity algorithm of N-baseline direction finding system including N-1 constant ratio double-baseline direction-finding subsystem is studied. One-dimensional integer search is made to find a pair of phase ambiguity number(k0n,l0n) within the scope of(-p/2,p/2), (-q/2, q/2)for each double-baseline direction finding system (Pnλ0/2,Pn+1λ0/2). The pairs of phase ambiguity numbers of the double-baseline are acquired according to two variables first-order indefinite equation, which are equal to the greatest eommon divisor(GCD) of Pn and Pn+1. The pairs of phase ambiguity numbers of the triple-baseline are the GCD of P1, P2 and P3 through the triple-baseline system composed of (P1λ0/2,P2λ0/2+P3λ0/2). The rest can be deduced by analogy, and the sets of phase ambiguity numbers of the N-baseline are obtained. The unique set of phase ambiguity numbers can be obtained if the GCD of P1, P2, …, PN is equal to unit. The algorithm has a low computation, thus it is suitable for real-time processing. Finally, simulation results verify its validity.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2008年第5期665-669,共5页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
干涉仪
基线比值恒定
相位解模糊
interferometers
constant ratio baseline
unwrapping phase ambiguity