期刊文献+

质点积分无单元伽辽金法及其在金属挤压过程中的应用 被引量:2

Particle integration of element free galerkin method and its application in metal extrusion simulation
下载PDF
导出
摘要 无单元伽辽金法需要在背景网格上积分,计算量大。节点积分无单元伽辽金法把对求解域的积分转化为对节点的求和,效率高,但因零能模态不受控制而会产生不稳定现象,需要采取一定的稳定化方案。本文采用应力点思想,通过Newton-Cotes法计算积分,建立了质点积分无单元伽辽金法,并通过小变形弹性静力学问题说明了该方法具有良好的稳定性,且计算效率远高于无单元伽辽金法。最后本文将质点积分无单元伽辽金法成功地应用于三维金属挤压成型过程的数值模拟,显示了该方法在分析此类问题时的优势和潜力。 Element Free Galerkin(EFG) method is very computationally intensive due to the requirement of elegant background cell quadratures. Nodal Integration of Element Free Galerkin (NIEFG) method converts the background cell quadrature into nodal integration, so that it is much more efficient than EFG. However, the existence of zero energy modes in NIEFG results in instability, and some stabilization scheme should be used to stabilize the method which may introduce significant extra errors. Based on the idea of stress points and Newton-Cotes integration, a particle integration of element free Galerkin (PIEFG) method is proposed in this paper. Numerical example of linear elasticity shows that the PIEFG is pretty stable and much more efficient than EFG. Furthermore, PIEFG is extended to the simulation of metal extrusion problems, which shows that PIEFG is very promising in metal extrusion simulation.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第5期595-601,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10172052) 新世纪优秀人才支持计划资助项目
关键词 无网格法 无单元伽辽金法 节点积分 金属成型 meshless methods element free galerkin nodal integration particle integration metal extrusion
  • 相关文献

参考文献14

  • 1张雄,刘岩.无网格方法[M].清华大学出版社.
  • 2BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin methods[J]. Int J Numer Methods Engrg , 1994, 37:229-256.
  • 3BELYTSCHKO T, KRONGAUZ Y, ORGAN D. Meshless methods: An overview and recent developments[J]. Comput Mech Engrg , 1996,139: 3-47,
  • 4BEISSEL S, BELYTSCHKO T. Nodal integration of the element-free method[J]. Comput Methods apply Mech Engrg, 1996,139 : 49-74.
  • 5CHEN J S, PAN C, WU C T. A Lagrangian reproducing kernel particle method for metal forming analysis[J]. Comput Mech,1998, 22:289-307.
  • 6DYKA C T, INGEL R P. Addressing Tension Instability in SHP Method[J]. Naval Research Laboratory, 1994.
  • 7DYKA C T, INGEL R P. An approach for tensile instablity in smoothed particle hydrodynamics [J ]. Com put Struct ,1994, 57:573-580.
  • 8ZHANG X, LIU X H, SONG K Z, et al. Leastsquare collocation meshless method [J]. Int J Num Meth Engrg, 2001,51 (9) : 1089-1100. McGraw-Hill, 1987.
  • 9BELYTSCHKO T, XlAO S P. Stability analysis of particle methods with corrected derivatives[J]. Comput Math Appl , 2002,43: 329-350.
  • 10RABCZUK T, BELYTSCHKO T, XIAO S P, Stable particle methods based on Lagrangian Kernels[J].Comput Methods Appl Mech Engrg, 2004, 193: 1035-1063.

二级参考文献11

  • 1Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229~256
  • 2Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8): 1 081~1 106
  • 3Yagawa G, Furukawa T. Recent developments of free mesh method. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1 419~1 443
  • 4Liu W K, Jun S, Li S. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 1995, 38(10): 1 655~ 1 679
  • 5Jun S, Liu W K, Belytschko T. Explicit reproducing kernel particle methods for large deformation problems.International Journal for Numerical Methods in Engineering,1998, 41(1): 137~166
  • 6Chen J S, Pan C, Wu C T. A Lagrangian reproducing kernel particle method for metal forming analysis. Computational Mechanics, 1998, 22(3): 289~307
  • 7Chen J S, Roque C, Pan C. Analysis of metal forming process based on meshless method. Journal of Materials Processing Technology, 1998, 80~ 81: 642 ~646
  • 8Boner J, Kulasegaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1 189~1 214
  • 9Xiong S W, Liu W K, Cao J, et al. On the utilization of reproducing kernel particle method for the numerical simulation of plane strain rolling. International Journal of Machine Tools & Manufacture, 2003, 43(1): 89~ 102
  • 10Xiong S W, Rodrigues J M, Martins P A. Application of the element free Galerkin method to the simulation of plane strain rolling. European Journal of MechanicsA/Solids, 2004, 23(1): 77~93

共引文献5

同被引文献20

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部