期刊文献+

采用有限单元法计算梁任意形状截面特性 被引量:18

Evaluation of arbitrary cross sectional properties with finite element method
下载PDF
导出
摘要 采用将梁截面离散化的方式,用数值积分计算截面的几何特性,并根据梁剪切变形和扭转理论,利用变分原理建立截面的有限元法方程,求解任意形状截面的扭转常数、剪切中心以及剪切面积修正系数等特性。本方法适用于各种形式的截面,具有计算精度高及适应性强的特点。根据上述理论编制了相应程序,按照不同的单元划分方式,分别计算出矩形截面截面特性,与理论解进行比较;又对舟山市定海长峙至岙山预应力混凝土连续箱梁截面进行了计算,并与Ansys结果进行比较,均证明采用本文的计算方法能得到满意的结果,且该方法适用于各种形状的截面形式。 The determination of the sectional properties of cross-section depends upon the solution of a two-dimensional boundary value problem. By making use of warping function, the torsion and flexure problems are formulated, a finite element procedure of two-dimensional torsion and flexure problem is developed for arbitrary cross-section by using the theorem of minimum potential energy. The cross-seetion is diseretized with six-node and eight-node isotropic cient, shear center and the shear area correction coeffiei plane element to evaluate the torsional coeffients of any beam with irregular cross-section. The sectional area and inertial moment are also calculated with the numerical integration, a finite element program is developed with this method, Two numerical examples a gular cross-section and the result of cross-section of box beam of SongAo re give bridge n, the result of a rectan- are compared with theoretical solution and the result with Ansys respectively to demonstrate the efficiency and accuracy of the method.
出处 《计算力学学报》 CAS CSCD 北大核心 2008年第5期634-639,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50278079)资助项目
关键词 有限元 梁单元 截面几何特性 剪切面积系数 扭转常数 finite element beam element cross-sectional properties shear area coefficient torsional coefficient
  • 相关文献

参考文献9

  • 1WILSON H B, FARRIOR DS. Computation of geometrical and inertial properties for general areas and volumes of revolution[J]. Computer Aided Design, 1976,8(4) : 257-263.
  • 2MILES R G, TOUH J G. A method for the computation of inertial properties for general areas [J]. Computer Aided Design, 1983,15(4) : 196-200.
  • 3EBERHARDT, Allen C, WILLIARD Grant H. Calculating precise cross-sectional properties for complex geometries[J]. Computers in Mechanical Engineering, 1987,6(2) :32-37.
  • 4MASON W E, HERRMANN L R. Elastic shear analysis of general prismatic shaped beams[J]. J Eng Mech, 1968,94 : 965-983.
  • 5WAGNER W, SAUER R, CUNHA J. Shear stresses in prismatic beams with arbitrary cross-sections [J]. International Journal for Numerical Methods in Engineering, 1999,45 : 7.
  • 6FRIEDMAN Z, KOSMATKA J B. Torsion and flexure of A prismatic isotropie beam using the boundary Element method[J]. Computers & Structures,2000, 74 .. 479-494.
  • 7LEONARD R. Herrmann, Elastic torsional analysis of irregular shapes[J]. Journal of the Engineering Mechanics Division, ASCE, 1965,91 : 11-19.
  • 8TIMOSHENKO S P, GOODIER J N.弹性理论(第3版)[M].The McGraw-Companies.清华大学出版社,2004.
  • 9ZIENKIEWICZ O C, TAYLOR R L. Finite Element Method ( 5th Edition ) [M]. Butterworth-Heinemann, Oxford, UK, 2000,

同被引文献122

引证文献18

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部