期刊文献+

Gauss因果模型中因果效应识别方法的比较 被引量:1

Comparing Identifiability Criteria for Causal Effects in Gaussian Causal Models
下载PDF
导出
摘要 一个Gauss因果模型中常常存在不只一种识别因果效应的方法,不同的方法对应的估计可能不同.该文对Pearl等人提出的前门准则,后门准则,工具变量准则等识别方法的估计精度进行了分析比较,并给出了相应的模拟结果,为实践中选择更优的识别准则提供了依据. In a Gaussian causal model, there may exist several criteria for the identification of the same causal effect, but the corresponding estimators may be different from each other. This paper consideres three popular identifiability criteria, front-door, back-door and instrumental variables criteria for causal effects, compares their estimate efficieneies and gives some simulations. These results can offer guidances for choosing better identifiability criterion in practice.
作者 赵慧 郑忠国
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第5期808-817,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(10571070) 中国博士后科学基金资助
关键词 Gauss因果模型 因果效应 前门准则 后门准则 工具变量 Gaussian causal models Causal effects Front-door criterion Back-door criterion Instrumental variables.
  • 相关文献

参考文献3

二级参考文献5

  • 1Holland,P. W.Statistics and causal inference, J.Amer. Statist[].Asso.1986
  • 2Rubin,D. B.Estimating causal effects of treatments in randomized and nonrandomized studies, J[].Educational Psychology.1974
  • 3Pearl,J.Causal diagrams for empirical research (with discussion)[].Biometrika.1995
  • 4Stone,R.The assumptions on which causal inferences rest, J.R. Statist[].Sociological Bulletin.1993
  • 5Pearl,J.Causal diagrams for empirical research[].Biometrika.1995

共引文献2

同被引文献7

  • 1Ay N, Polani D.Information flows in causal networks[J].Advances in Complex Systems, 2008,11 ( 1 ) : 17-41.
  • 2Pearl J.Causality:models,reasoning and inference[M].Cambridge: Cambridge University Press,2000.
  • 3Slezak D.Degrees of conditional dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection[J].Information Sciences, 2009, 179(3) : 197-209.
  • 4Chickering D M, Meek C.On the incompatibility of faithfulness and monotone DAG faithfulness[J].Artificial Intelligence, 2006, 170(8) :653-666.
  • 5Chan H, Kuroki M.Using descendants as instrumental variables for the identification of direct causal effects in linear SEMs[C]// International Conference on Artificial Intelligence and Statistics (A/STATS), Sardinia, Italy, 2010.
  • 6Levitz M, Perlman M D,Madigan D.Separation and completeness properties for amp chain graph Markov[J].The Annals of Statistics, 2001,29 (6) : 1751-1784.
  • 7杨有龙,刘蔚,吴艳.贝叶斯网络的非忠实性分布[J].智能系统学报,2009,4(4):335-338. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部