期刊文献+

关于赋权图中重圈的一个范型定理

A Fan Type Theorem for Heavy Cycles in Weighted Graphs
下载PDF
导出
摘要 设G=(V,E;w)为赋权图,定义G中点v的权度d_G^w(v)为G中与v相关联的所有边的权和.该文证明了下述定理:假设G为满足下列条件的2-连通赋权图:(i)对G中任何导出路xyz都有w(xy)=w(yz);(ii)对G中每一个与K_(1,3)或K_(1,3+e)同构的导出子图T,T中所有边的权都相等并且min{max{d_G^w(x),D_G^w(y)}:d(x,y)=2,x,y∈V(T)}≥c/2.那么,G中存在哈密尔顿圈或者存在权和至少为c的圈.该结论分别推广了Fan,Bedrossian等人和Zhang等人的相关定理. Let G = (V, E; w) be a weighted graph, and define the weighted degree dw/G(v) of a vertex v in G as the sum of the weights of the edges incident with v. In this paper, the following theorem is proved: suppose G is a 2-connected weighted graph, where (i) w(xy) = w(yz) for every induced path xyz, and (ii) in every induced subgraph T of G isomorphic to K1,3 or K1,3 + e, all the edges of T have the same weight and min{max{dw/G(x),dw/G(y)} : d(x,y) = 2, x, y ∈ V(T)} ≥ c/2, then G contains either a Hamilton cycle or a cycle of weight c at least. This respectively generalizes three theorems of Fan, Bedrossian et al and Zhang et al.
作者 余荣 胡智全
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第5期923-928,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(10371048)资助
关键词 拟正规赋权图 重路 哈密尔顿圈 权度 Semi-normal weighted graph Heaviest longest path Hamiltonian cycle Weighteddegree.
  • 相关文献

参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications, Macmitlian. New York: London and Elsevier, 1976
  • 2Bedrossian P,Chen G, Schelp R H. A generlization of Fan's condition for hamiltonicity, pancyclicity, and hamiltonian connectedness. Discrete Math, 1993, 115:39-50
  • 3Dirac G A. Hamilton circuits and long circuits in finite graphs. Ann Discrete March, 1978, 3:75-92
  • 4Dirac G A. Some theorems on abstrct graphs. Proc London Math Soc, 1952, 2:69-81
  • 5Fan G. New sufficient conditions for cycles in graphs. J Combin Theory Ser B, 1984, 37:221-227
  • 6Hu Zhiquan, Tian F, Wei B, Yoshimi Egawa, Kazuhide Hirohata. Fan-type theorem for path-connectivity. J Graph Theory, 2002, 19:265-282
  • 7Zhang S, Broersma H J, Li X, Wang L. A Fan type condition for heavy cycles in weighted graphs. Graphs Combin. 2002, 18:193-200
  • 8Zhang S, Li X, Broersma H J. Heavy paths and cycles in weighted graphs, Discrete Math, 2000, 223: 327-336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部