期刊文献+

基于粒子群算法的内外翅片管换热器优化 被引量:7

PSO-Based Optimization of Internally and Externally Finned Tube Heat Exchanger
下载PDF
导出
摘要 粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种新型的优化算法,今把PSO应用于内外翅片管换热器的结构尺寸优化,建立了物理数学模型,开发了C++程序。把体积作为优化目标函数,以换热面积和压降作为约束条件,对管子横向间距、纵向间距、管排数、外翅片间距、换热器在与热气流垂直方向的长度进行了优化,并与利用遗传算法的文献结果对比:在相同的设计参数和相同的优化变量搜索范围条件下,体积减小9.5%,重量减轻16%,优化计算时间减小一个量级,PSO应用于换热器优化设计优于遗传算法。 Particle Swarm Optimization (PSO) is a new type of optimization algorithm, and it was used here to optimize the structural dimensions of the internally and externally finned tube exchanger. The physical and mathematical model was established, and the C++ Program was developed. The heat exchanger volume was considered as the optimization objective function; the heat transfer area required for the heat duty and the pressure drop were considered as the restrictive conditions. The transverse tube pitch, longitudinal tube pitch, the number of tube rows, fin pitch and the heat exchanger length along the direction perpendicular to the hot gas flow were taken as the optimization variables. Under the same design parameters and the same optimization variables scope of the search conditions, comparing with the results obtained by using optimization algorithm of genetic algorithm, the volume of heat exchanger obtained by using optimization algorithm of PSO algorithm decreases by 9.5%, its weight obtained reduces by 16% and the computing time needed reduces by one order of magnitude. It indicates that the PSO algorithm is superior to genetic algorithm for the optimization of heat exchanger design.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2008年第5期744-749,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(50776068) 国家863计划高效节能与分布式供能技术专题(2007AA05Z204)
关键词 粒子群优化算法 内外翅片管换热器 结构尺寸优化 换热面积 压降 遗传算法 Particle Swarm Optimization internally and externally finned tube heat exchanger size optimization heat transfer area pressure drop genetic algorithm
  • 相关文献

参考文献22

  • 1FAN Jing(范菁).Heat Exchanger Design Optimization(换热器优化设计)[Z].Jinall(济南):Space Themaal Sciences Research Center of Shandong University(山东大学空间热科学研究中心),2005.
  • 2Xie G N, Wang Q w, Sunden B. Application a genetic algorithm into thermal design of fin-and-tube heat exchangers [J]. Heat Transfer Engineering, 2008, 29(7): 597-607.
  • 3Xie G N, Wang Q w, zeng M. Genetic algorithm based design and optimization of an outer-fins and Inner-fins tube heat exchanger [A]. Proceedings of GT 2007, Power for Land, Sea and Air [C], Montreal, Canada: Ppaper No. GT2007-27889, 2007.
  • 4Xie G N, Chen Q Y, Zeng Met al. Thermal design of heat exchanger with fins inside and outside of tubes [A]. Proceedings of GT 2006, ASME Turbo Expo [C], Barcelona, Spain: Paper No. GT2006-90260, 2006.
  • 5Pacheco-Vega A, Sen M, Yang K T et al. Genetic algorithms-based predictions of fin-tube heat exchanger performance [A].Proceedings of 11th International Heat Transfer Conference [C], Kyongju, Korea: 1998, 6: 137-142.
  • 6Selbas R, Kizilkan O, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view [J]. Chemical Engineering and Processing, 2006, 45: 268-275.
  • 7Liang H X , Xie G N, Zeng M et al. Genetic algorithm optimization for primary surf- aces recuperator of microturbine [A]. Proceedings of GT 2006, ASME Turbo Expo [C], Barcelona, Spain: Paper No. GT2006-90366, ASME J Engineering for Gas Turbine Power, 2006.
  • 8黄晓峰,潘立登,陈标华,李成岳.用改进的实数编码遗传算法估计反应动力学参数[J].高校化学工程学报,1999,13(1):50-55. 被引量:27
  • 9刘云,徐伟福,赵伟,周昆颖.遗传算法在管箱式翅片管换热器优化设计中的应用[J].北京化工大学学报(自然科学版),2003,30(6):87-90. 被引量:3
  • 10张丽娜,杨春信,王安良.应用遗传算法优化设计板翅式换热器[J].航空动力学报,2004,19(4):530-535. 被引量:26

二级参考文献83

共引文献148

同被引文献87

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部