摘要
侧廓问题是:寻找一个从V(G)到正整数集合{1,2,…,│V(G)│}的一个一一对应,使Σ x∈V(G)(f(x)-min y∈N*(x)f(y))尽可能小,这里y∈N(*x),N(*x)是x的闭邻域.本文我们研究侧廓问题的一个运算.
Abstract: The profile minimization problem is to find a one-to-one mappingf from the vertex set V(G) of graph G to the set of positive integers (1,2, ..., |V(G)|)such that ∑z∈V(G) (f(x)-min y∈N(x) f(y)) is as small as possible,where N^*(x) is the closed neighborhood of x in G. In this paper we study one operation of the problem.
出处
《河南科学》
2008年第11期1310-1313,共4页
Henan Science
基金
National The Project Supported by Zhejiang Provincial Natural Science Foundation of China(102055)
Nature Science Foundation of China(10471131)
关键词
稀疏矩阵
侧廓
标号
线性布置
sparse matrix
profile
labeling
linear layout