期刊文献+

基于贝叶斯定理的个性化教务选课网站的研究 被引量:1

Personalized Educational Administration Chooses Class Web-site Based on Bayes Theorem
下载PDF
导出
摘要 利用贝叶斯定理及其概率模型,结合过滤算法,对教务选课网站个性化设计进行研究,通过对用户以往访问的历史记录进行分析,予以推荐最新的内容,从而提高了用户的满意度,降低了用户浏览信息所消耗的时间,适应了用户的兴趣. Most of the educational administration chooses class web-site have the problems like overload information and resource isotropic, so, it is a question of urgent personalized web-site design to be solved which needs to recommend useful information to them by analyzing the visitor's history records. In the paper some research on the personalization of web content recommendation by using Bayes theorem and Filter algorithm are made. It can recommend the latest information to web browsers and reduce the time spending on browsing the web, and adapt the interesting of them.
作者 窦桂琴
机构地区 中原工学院
出处 《中原工学院学报》 CAS 2008年第5期21-24,共4页 Journal of Zhongyuan University of Technology
基金 湖北省科技攻关项目(2007AA101C49)
关键词 贝叶斯 概率模型 个性化 过滤算法 Bayes probabilistic model personalization filter algorithm
  • 相关文献

参考文献5

  • 1王海鹏,周兴社,倪红波,等.面向智能博物馆的主动式个性化信息服务[M].北京:清华大学出版社,2007:528-534.
  • 2Thorsten Joachims,Dayne Freitag,Tom Mitchell. WebWatch: A Tour Guide for the World Wide Web[C]//. In:Georgeff,M P,Pollack, E M, Ends. Proceedings of the International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1997 : 770-777.
  • 3Susanne Boll. Modular Content Personalization Service Architecture for E Commerce Applications[C]//. Advanced Issues of E Commerce and Web-Based Information Systems. Vienna : Vienna University, 2002:213-220.
  • 4潘志方.基于朴素贝叶斯学习的电子商务网站客户兴趣分类的应用研究[J].计算机科学,2007,34(6):214-215. 被引量:4
  • 5冀俊忠,沙志强,刘椿年.一种基于贝叶斯网客户购物模型的商品推荐方法[J].计算机应用研究,2005,22(4):65-68. 被引量:6

二级参考文献14

  • 1曹渝昆,李云峰,汪成亮,周明强.改进型模糊神经网络在顾客分类中的应用研究[J].计算机工程与应用,2006,42(19):218-221. 被引量:2
  • 2B Sarwar, G Karypis, J Konstan, et al. Analysis of Recommendation Algorithms for Ecommerce[ C ]. Minneapolis:Proceedings of ACM Ecommerce, ACM Press, 2000. 158-167.
  • 3B Mobasher, H Dai, et al. Discovery of Aggregate Usage Profiles for Web Personalization [ EB/OL ]. Proceedings of the WebKDD Workshop. http://citeseer, nj. nec. com/mobashet00discovery, html,2000.
  • 4B Mobasher, R Cooley, J Srivastava. Automatic Personalization Based on Web Usage Mining[ J ]. Communications of the ACM,2000, 43(8) : 142-151.
  • 5B Mobasher, H Dai, T Luo,et al. Effective Personalization Based on Association Rule Discovery from Web Usage Data[ C ]. Atlanta: Proe.of ACM Workshop on Web Information and Data Management(WIDM) ,ACM Press, 2001. 103-112.
  • 6B Kitts, D Freed, M Vriese. Cross-sell: A Fast Promotion Tunable Customer-item Recommendation Method Based on Conditionally Independent Probabilities[ C]. Boston:Proceedings of KI)D, ACM Press,2000. 437-446.
  • 7T M Mitchell. Machine Learning[ M]. The McGraw-Hill Companies,Inc, 1997. 184-199.
  • 8S Paola, R Marco, C Alexander. Profiling Your Customers Using Bayesian Networks[J]. ACM SIGKDD, 2000, 1 (2) : 1-6.
  • 9C Conati, K Vanlehn. POLA: A Student Modeling Framework for Probabilistic On-line Assessment of Problem Solving Performance[ C]. Kailua-Kona, HI: Proceedings of the 5th International Conference on User Modeling, User Modeling Inc. , 1996.75-82.
  • 10C N Liu, L Zheng, J Z Ji, et al. Electronic Homework on the[C]. Proc. WI-2001, Maebashi, Springer-Verlag, 2001. 540-548.

共引文献8

同被引文献5

  • 1钱晓东,王正欧.基于改进KNN的文本分类方法[J].情报科学,2005,23(4):550-554. 被引量:19
  • 2Soucy P, Mineau G W. A Simple KNN Algorithm for Text Categorization[J]. Proceedings of the IEEE International Conference on Data Mining, 2001 (2) :647 - 648.
  • 3Qiu Chen Yan,Nixon M S,Damper R I. Implementing the k-nearest Neighbour Rule via a Neural Network[J].Proceedings of the IEEE International Conference on Neural Networks, 1995(1):136-140.
  • 4Kuncheva L I. Fitness Function in Editing Knn Reference Set by Genetic Algorithms[J]. Pattern Recognition, 1997,30 (6) : 1041-1049.
  • 5李荣陆,胡运发.基于密度的kNN文本分类器训练样本裁剪方法[J].计算机研究与发展,2004,41(4):539-545. 被引量:98

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部