期刊文献+

LOWER BOUNDS FOR SUP+INF AND SUP*INF AND AN EXTENSION OF CHEN-LIN RESULT IN DIMENSION 3 被引量:1

LOWER BOUNDS FOR SUP+INF AND SUP*INF AND AN EXTENSION OF CHEN-LIN RESULT IN DIMENSION 3
下载PDF
导出
摘要 We give two results about Harnack type inequalities. First, on Riemannian surfaces, we have an estimate of type sup + inf. The second result concern the solutions of prescribed scalar curvature equation on the unit ball of Rn with Dirichlet condition. Next, we give an inequality of type (supK ^u)^2s-1 × infπu ≤ c for positive solutions of △u = V u^5 on Ω belong toR^3, where K is a compact set of Ω and V is s-Holderian, s ∈] - 1/2, 1]. For the case s = 1/2 and Ω = S3, we prove that, if minΩ u 〉 m 〉 0 (for some particular constant m 〉 0), and the H¨olderian constant A of V tends to 0 (in certain meaning), we have the uniform boundedness of the supremum of the solutions of the previous equation on any compact set of Ω. We give two results about Harnack type inequalities. First, on Riemannian surfaces, we have an estimate of type sup + inf. The second result concern the solutions of prescribed scalar curvature equation on the unit ball of Rn with Dirichlet condition. Next, we give an inequality of type (supK ^u)^2s-1 × infπu ≤ c for positive solutions of △u = V u^5 on Ω belong toR^3, where K is a compact set of Ω and V is s-Holderian, s ∈] - 1/2, 1]. For the case s = 1/2 and Ω = S3, we prove that, if minΩ u 〉 m 〉 0 (for some particular constant m 〉 0), and the H¨olderian constant A of V tends to 0 (in certain meaning), we have the uniform boundedness of the supremum of the solutions of the previous equation on any compact set of Ω.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期749-758,共10页 数学物理学报(B辑英文版)
关键词 sup × inf sup inf Harnack inequality moving-plane method sup × inf, sup + inf, Harnack inequality, moving-plane method
  • 相关文献

参考文献16

  • 1Aubin T. Some nonlinear problems in Riemannian Geometry. Springer-Verlag, 1998.
  • 2Bahoura S S. Inegalites de Harnack pour les solutions d'equation du type courbure sclaire prescrite. C R Math Acad Sci Paris, 2005, 341(1): 25-28.
  • 3Bahoura S S. Estimations du type supu x infu sur une variete compacte. Bull Sci Math, 2006, 130(7): 624-636.
  • 4Bahoura S S. Majorations du type supu × infu ≤ c pour l'equation de la courbure scalaire sur un ouvert de R^n,n ≥3. J Math Pures Appl, 2004, 83(9): 1109-1150.
  • 5Brezis H, Li Y Y, Shafrir I. A sup-kinf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J Funct Anal, 1993, 115:344-358.
  • 6Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of -△^u = V(x)e^u in two dimension. Commun in Partial Differential Equations, 1991, 16(8 and 9): 1223-1253
  • 7Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1984, 37:369-402.
  • 8Chen C C, Lin C S. Estimates of the conformal scalar curvature equation via the method of moving planes. Comm Pure Appl Math L, 1997, 50(10): 971-1017.
  • 9Chen C C, Lin C S. A sharp sup-binf inequality for a nonlinear elliptic equation in R^2. Commun Anal Geom, 1998, 6(1): 1-19.
  • 10Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Grundlehern Math Wiss, 224. Second edition. Berlin: Springer-Verlag, 1983.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部