期刊文献+

A RELAXATION RESULT OF FUNCTIONALS IN THE SPACE SBD(Ω)

A RELAXATION RESULT OF FUNCTIONALS IN THE SPACE SBD(Ω)
下载PDF
导出
摘要 In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption. In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期770-778,共9页 数学物理学报(B辑英文版)
基金 the Doctorial Programme Foundation of EducationMinistry of of China(20030288002) the Science Foundation of Jiangsu Province(BK2006209) NaturalScience Foundation of Jiangsu Higher Education Bureau(07KJD110206) NNSF of China(10771181)
关键词 Integral representation RELAXATION special functions with bounded deformation Integral representation, relaxation, special functions with bounded deformation
  • 相关文献

参考文献18

  • 1Matthies H, Strang G, Christiansen E. The saddle point of a differential program. In: Energy Methods in Finite Element Analysis. New York: Wiley, 1979.
  • 2Braides A, Defranceschi A, Vitali E. A relaxation approach to Hencky's plasticity. Appl Math Optimization, 1997, 35:45-68.
  • 3Barroso A C, Fonseca I, Toader R. A relaxation theorem in the space of functions of bounded deformation. Ann Scuola Norm Sup Pisa, Cl Sc, 2000, 29(1): 19-49.
  • 4Ebobisse F, Toader R. A note on the integral representation of functionals in the space SBD(Ω). Rend Mat Appl, 2003, 23(7): 189-201.
  • 5Bouchitte C, Fonseca I, Mascarenhas L. A global method for relaxation. Arch Rational Mech Anal, 1998, 145:51-98.
  • 6Ambrosio L, Coscia A, Dal Maso G. Fine properties of functions with bounded deformation. Arch Rational Mech Anal, 1997, 138:201-338.
  • 7Kohn R V. New estimates for deformationa in terms of their strains [Ph D Thesis]. Princeton University, 1979.
  • 8Suquet P M. Un espace fonctionel pour les equations de la plasticite. Ann Fac Sci Toulouse, 1979, 1: 77-87.
  • 9Temam R. Problemes Mathematiques en Plasticite. Gauthier-Villars, 1983.
  • 10Bellettini G, Coscia A, Dal Maso G. Special functions of bounded deformation. Math Z, 1998, 228: 337-351.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部