摘要
In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.
In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.
基金
the Doctorial Programme Foundation of EducationMinistry of of China(20030288002)
the Science Foundation of Jiangsu Province(BK2006209)
NaturalScience Foundation of Jiangsu Higher Education Bureau(07KJD110206)
NNSF of China(10771181)