期刊文献+

COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY,VACUUM AND GRAVITATIONAL FORCE IN THE CASE OF GENERAL PRESSURE 被引量:5

COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY, VACUUM AND GRAVITATIONAL FORCE IN THE CASE OF GENERAL PRESSURE
下载PDF
导出
摘要 This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved. This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
作者 姚磊 汪文军
出处 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期801-817,共17页 数学物理学报(B辑英文版)
基金 Program for New Century ExcellentTalents in University(NCET-04-0745) the Key Project of the National Natural Science Foundation of China(10431060)
关键词 Compressible Navier-Stokes equations VACUUM a priori estimates a globalweak solution EXISTENCE Compressible Navier-Stokes equations, vacuum, a priori estimates, a globalweak solution, existence
  • 相关文献

参考文献20

  • 1Balian R. From Microphysics to Macrophysics, Texts and Monographs in Physics. Springer, 1982.
  • 2Duan R J, Yang T, Zhu C J. Navier Stokes equations with degenerate viscosity, vacuum and gravitational force. Math Methods Appl Sci, 2007, 30(3): 347-374.
  • 3Fang D Y, Zhang T. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun Pure Appl Anal, 2004, 3(4): 675-694.
  • 4Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29(10): 1081-1106.
  • 5Fang D Y, Zhang T. Discontinuous solutions of the compressible Nivier-Stokes equations with degenerate viscodity coefficient and vacuum. J Math Anal Appl, 2006, 318(1): 224-245.
  • 6Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51:887-898.
  • 7Jiang S, Xin Z -P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3): 239-251.
  • 8Liu T -P, Xin Z -P, Yang T. Vacuum states of compressible flow. Discrete and Continuous Dynamical Systems, 1998, 4:1-32.
  • 9Luo T, Xin Z -P, Yang T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal, 2000, 31:1175-1191.
  • 10Nishida T. Equations of motion of compressible viscous fluids. In: Nishida T, Mimura M, Pujii H, eds. Patterns and Waves-Qualitative Analysis of Nonlinear Differential Equations. Amsterdam: North-Holland, 1986. 97-128.

同被引文献15

  • 1Ding Shijin, Wen Huanyao, Yao Lei, et al. Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum [J]. SIAM Journal on Mathematical Analysis, 2012 (44): 1257-1278.
  • 2David Hoff, Mohammed Ziane. Finite-dimensional attractors and exponential attractors for the Navier-Stokes equations of compr- essible flow[J]. SIAM J Math Anal, 2003, 34 (5):1040-1063.
  • 3Okada M. Free boundary value problems for the equation of one-dimensional motion of viscous gas[J]. Japan J Indust Appl Math, 1989,6: 161-177.
  • 4Guo Z, Jiu Q, Xin Z. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients [J]. SIAM J Math Anal, 2008,39 (5) : 1402-1427.
  • 5Jiang S, Xin Z, Zhang P. Global solutions to 1D compressible isentropy Navier-Stokes with density--dependent viscosity [J] Methods and Applications of Analysis, 2005, 12 (3) : 239-252.
  • 6Yang T, Zhao H. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity[J]. J Differential Equations, 2002, 184: 163-184.
  • 7Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum[J]. Commu Math Phys, 2002, 230: 329-363.
  • 8Zhang Ting, Fang Daoyuan. Global behavior of compressible Navier-Stokes equations with degenerate viscosity coefficient[J]. Archive for Rational Mechanics and Analysis, 2012, 4: 223-253.
  • 9陈伟,张凌.粘性依赖于密度的一维流体力学方程[J].龙岩学院学报,2007,25(6):29-32. 被引量:2
  • 10Junping YIN Zhong TAN.Global Existence of Strong Solutions of Navier-Stokes-Poisson Equations for One-Dimensional Isentropic Compressible Fluids[J].Chinese Annals of Mathematics,Series B,2008,29(4):441-458. 被引量:6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部