期刊文献+

入侵检测规则动态生成研究 被引量:4

Research of the Dynamical Rule Generation for Intrusion Detection System
下载PDF
导出
摘要 在入侵检测研究领域中,提高检测模型的检测率并降低误报率是一个重要的研究课题.本文提出了一种针对网络入侵检测事务流的实时动态规则生成方法.该方法解决了当前主流关联规则生成算法应用到入侵检测过程中存在的多遍扫描、大量无效规则和频繁集产生等问题.实验结果表明,文中所提出的方法在规则动态生成和对网络异常情况的检测方面都显示出比较好的性能,相对Snort入侵检测系统,平均提高10%左右的检测精度,克服了Snort系统在异常检测方面的局部缺陷. In the research of the network intrusion detection, it is an important topic to improve detection rate and reduce false positive rate. In this paper, a novel real-time and dynamical rule generation method for network intrusion detection stream was proposed. This method solves a number of problems of the popular association rules extraction method that exist in applying association rules algorithm to the intrusion detection: multi-scan;a lot of useless rules; a lot of unwanted frequent sets. Experimental results have demonstrated the good performance between building efficacious rules and detecting the abnormal attack events. Comparing the detecting accuracy and the detecting anomaly attack events with the Snort intrusion detection system, It can improve 10% or so averagely and overcome the shortage of the detecting anomaly event of the Snort system.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2008年第5期116-120,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 北京交通大学科技基金资助项目(2006XM007)
关键词 规则生成 入侵检测 关联规则 FP-TREE算法 rule generation intrusion detection association rules FP-Tree algorithm
  • 相关文献

参考文献8

  • 1Prema Rajeswari L, Kannan A. An Intrusion Detection System Based on Multiple Level Hybrid Classifier Using Enhanced C4.5 [ C ] // Communications and Networking Madras Institute of Technology. Chennai, India: IEEE, 2008 : 75 - 79.
  • 2Mukkamala S, Janoski G I. Intrusion Detection Using Support Vector Machines [ C ] // Proc. High Performance Computing Symposium( HPC' 02), 2002 : 178 - 183.
  • 3Zhang Jiong. A Hybrid Network Intrusion Detection Technique Using Random Forests[ C ] //Proceedings of the First International Conference on Availability, Reliability and Security. Austria, 2006 : 262 - 269.
  • 4Agrawa R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[ C]//Proceedings of the ACM SIGMOD Conf. on Management of Data( SIGM OD' 93). New York: ACM Press, 1993 : 207 - 216.
  • 5Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the 2000 ACM SIGMOD Conf. on Management of Data (SIGMOD' 2000). New York:ACM Press,2000:1- 12.
  • 6KDD Cup 1999 Data [ DB/OL ]. ( 2007-10-25 ) [ 1998 ]. http://kdd. ies. uei. edu/databases/kddeup99/kddeup99. html.
  • 7Snort[CP/OL]. (2008-2-18) [ 1999]. http://www.snort. org.
  • 8Ajith Abraham. D-SCIDS: Distributed Soft Computing Intrusion Detection System [ J]. Journal of Network and Computer Applications, 2005, 32(7) : 1 - 19.

同被引文献20

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部