摘要
水质评价多以静态评价为主,马尔可夫评价模型为动态评价模型,但无法对多指标水质进行评价.对马尔可夫模型进行改进,将多指标评价中的权重引入到马尔可夫模型中,将小权重的指标状态空间进行压缩,进而建立转移矩阵,求绝对进步度和相对进步度,从而将水质动态变化情况用明确的数值进行量化,得到多指标熵权马尔可夫水质动态评价模型.将此模型应用于济南市大明湖水质动态评价中,得到了比较符合实际的结果.
Water quality evaluation is mainly static state evaluation. Markov evaluation model is a dy- namic evaluation model, but it can't evaluate muttifactorial water quality. The Markov model is improved by introducing multifactorial entropy weight into it and compressing the state space of little weight factor. This improved model calculates the absolute and comparative progresses by transmission matrix in order to compute water quality dynamic variation with numerical calculation. This model has been applied to water quality dynamic evaluation of Darning Lake in Jinan city; and a comparative good result has been obtained.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2008年第5期54-57,共4页
Engineering Journal of Wuhan University
关键词
熵权
马尔可夫
转移矩阵
相对进步度
entropy weight
Markov
transmission matrix
comparative progress