期刊文献+

数据挖掘技术在高校课堂教学评价中的应用 被引量:11

Application of Data Mining Technology in Classroom Teaching Evaluation
下载PDF
导出
摘要 数据挖掘技术目前在商业、金融业等方面都得到了广泛的应用,而在教育领域应用较少。数据挖掘中的关联规则挖掘能够发现大量数据中项集之间有趣的关联或相关联系,特别是随着大量数据不停地收集和存储,从数据库中挖掘关联规则就越来越有其必要性。文中从滁州学院教师档案数据库提取相关教师的记录,并结合课堂教学质量评估中的实际数据,利用改进的Apriori算法找出教师本身的素质与学生评价结果之间的内在关系。 Currently the data mining technology is extensively applied in commerce, finance, ete, whereas there is little application in education. The many interesting relations and relevance between the different items of sets can be located by means of the association rules mining technique of data mining. The mining of association rules from databases becomes especially necessary with the data in collection and storation becomes even larger. Extracts some records from teachers of Chuzhou university,and integrates true data in classroom teaching evaluation, and finds intrinsic relation between nature of teachers and result of student's evaluation make use of an improvement on Apriori algorithm.
作者 袁万莲 郑诚
出处 《计算机技术与发展》 2008年第11期247-249,F0003,共4页 Computer Technology and Development
基金 安徽省自然科学项目(KJ2007B124)
关键词 数据挖掘 关联规则 APRIORI算法 课堂教学评价 data mining association rule Apriori algorithm classroom teaching evaluation
  • 相关文献

参考文献5

二级参考文献14

  • 1皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 2Fayyad U. Knowledge Discovery and Data Mining Towards a Unifying Framework. KDD96Proc.2 nd Intl.Conf.on Knowledge Discovery & Data Mining, AAAI Press,1996.
  • 3Chen M S, Han J, Yu P S. Data Miaing: An Overview from a Database Perspective. IEEE Trans. on Knowledge and Data Eng.,1996,8(6): 866-883.
  • 4Savasere A, Edward Omiecinski,Navathe S. An Efficient Algorithm for Mining Association Rules in Large Database[A].Proceeding of the 21st Internation Conference on Very Large Database[C]. Zurich,Switzerland: Morgan Kaufmann Publiaher,Inc., 1995:432-444.
  • 5范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6AGRAWAL R,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large database[A].In Proc.of the ACM SIGMOD Intl Conf.on Management of Data[C].Washington,D.C.,1993.207 -216.
  • 7PARK JS,CHEN MS,YU PS.An effective hash based algorithm for mining association rules[A].ACM SIGMOD International Conference Management of Data[C].1995.175-186.
  • 8SAVASERE A,OMIECINSKI E,NAVATHE S.An efficient algorithm for mining association rules in large database[A].In:Proc.of 21th Intl Conf.on Very Large DataBase[C].Zurich,Swizerland,1995.432-443.
  • 9PASQUIER N,BASTIDE Y,TAOUIL R,et al.Discovering frequent closed item sets for association rules[A].ICDT'99,Israel[C].1999.398 -416.
  • 10HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[A].In:Proceedings of the 2000 ACM SIGMOD Internal Conference on Management of Data[C].Dallas,Texas:ACM Press,2000.1-12.

共引文献126

同被引文献57

引证文献11

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部