期刊文献+

一种新的进化算法——种子优化算法 被引量:5

A Novel Evolutionary Algorithm——Seed Optimization Algorithm
原文传递
导出
摘要 受自然界种子传播方式的启发,提出一种进化算法——种子优化算法.该算法通过模拟植物生存的自适应现象,逐代进化,寻找最优结果,解决复杂的优化计算问题.对该算法的全局寻优性能进行分析证明.通过典型优化问题的实例仿真实验,表明该算法具有较好的寻优性能. Inspired by the transmission of seeds in nature, an evolutionary algorithm, seed optimization algorithm (SOA), is proposed. The algorithm is designed by simulating the self-adaptive phenomena of plant and it can be used to resolve complex optimization problems with the evolution of plant. The global convergence analysis of SOA is made by using the Solis and Wets' research results. Finally, SOA is applied to three function optimization problems and compared with particle swarm optimization (PSO) algorithm. The experimental results show that SOA has stable and robust behaviour and it can be used as a promising alternative to existing optimization methods for engineering design.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第5期677-681,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60774096 60472111)
关键词 进化计算 种子优化算法(SOA) 全局最优性 粒子群算法(PSO) Evolutionary Computation, Seed Optimization Algorithm (SOA), Global Optimality,Particle Swarm Optimization (PSO)
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995 : 1942 - 1948
  • 2Ant Colony Optimization [ DB/OL]. [ 2007 - 05 - 08 ]. http:// www. aco-metaheuristic. org
  • 3王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351
  • 4Penev K, Littlefair G. Free Search: A Comparative Analysis. Information Sciences, 2005, 172(1/2) : 173 - 193
  • 5Montiel O, Castillo O, Melin P, et al. Human Evolutionary Model: A New Approach to Optimization. Information Sciences, 2007, 177 (10) : 2075 - 2098
  • 6Fan S K S, Zahara E. A Hybrid Simplex Search and Particle Swarm Optimization for Unconstrained Optimization. European Journal of Operational Research, 2007, 181 (2) : 527 - 548
  • 7Mukherjee V, Ghoshal S P. Intelligent Particle Swarm Optimized Fuzzy PID Controller for AVR System. Electric Power Systems Research, 2007, 77(12) : 1689 - 1698
  • 8Zahiri S H, Seyedin S A. Swarm Intelligence Based Classifiers. Journal of the Franklin Institute, 2007, 344(5): 362- 376
  • 9Solis F J, Wets R T B. Minimization by Random Search Techniques. Mathematics of Operations Research, 1981, 6( 1 ) : 19 -30
  • 10Cui Zhihua, Zeng Jianchao. A Guaranteed Global Convergence Particle Swarm Optimizer//Proc of the 4th International Conference on Rough Sets and Current Trends in Computing. Uppsala, Sweden, 2004 : 762 - 767

二级参考文献10

  • 1李宁,付国江,库少平,陈明俊.粒子群优化算法的发展与展望[J].武汉理工大学学报(信息与管理工程版),2005,27(2):26-29. 被引量:28
  • 2Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behaviour[J].Nature,2000,406(6):39~42
  • 3Kennedy J,Eberhart R C.Particle swarm optimisation[A].In:Proc.of the IEEE International Conference on Neural Networks[C].Piscatawav,NJ,USA:IEEE,1995.1942~1948
  • 4Cui Zhihua,Zeng Jianchao.A Guaranteed Global Convergence Particle Swarm Optimizer.RSCTC'2004[C].Sweden,2004.762~767
  • 5Solis F,Wets R.Minimization by random search techniques.Mathematics of Operations Research,1998,6(1):19~30
  • 6http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-099Fall2003/594A2FDC-A9B1-4336-AFDC-E2298F3C0DC4/0/ses5_ solis_ wets.pdf
  • 7Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2002,6(1):58~73
  • 8张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78
  • 9李沛君.逆向思维在企业经营创新中的应用[J].重庆商学院学报,2002(1):68-69. 被引量:1
  • 10柯晶,钱积新,乔谊正.一种改进粒子群优化算法[J].电路与系统学报,2003,8(5):87-91. 被引量:39

共引文献352

同被引文献34

  • 1张晓明,王儒敬.一种带逆反的粒子群算法[J].计算机科学,2006,33(10):156-159. 被引量:3
  • 2徐宗本.模拟进化计算[M].//计算智能:第一册.北京:高等教育出版社,2004.
  • 3Dote Y, Ovaska S J. Industrial applications of soft computing: A review. Proceedings of IEEE, 2001,89(9): 1243-1265.
  • 4Meijuan Gao,Jin Xu, Jingwen Tian,Hao Wu. Path Planning for Mobile Robot Based on Chaos Genetic Algorithm. Fourth International Conference on Ntltural Computation, Volume 4,2008:409-413.
  • 5Gondro C., Kinghorn BP. A simple genetic algorithm for multiple sequence alignment. Genetics and Molecular Research,2007(6): 964-982.
  • 6吕勇.蚁群优化算法及在网络路由中的应用研究[D].杭州:浙江大学,2006.
  • 7李晨.基于免疫遗传算法的物流配送VRP问题研究[D].天津:天津理工大学.2009.
  • 8F Alffedo,T Montan,R Galv.A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service[J].Computers&Operations Research,2006,33:595-619.
  • 9B Ombuki,B J Ross,E Hanshar.Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows[J].Applied Intelligence,2006,(24):17-30.
  • 10E Taniguchi,N Ando.An Experimental Analysis on Probabilistic Vehicle Routing and Scheduling with ITS[J].Journal of the Eastern Asia Society for Transportation Studies,2005,(6):3 052-3 061.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部