期刊文献+

Numerical Complexiton Solutions of Complex KdV Equation

Numerical Complexiton Solutions of Complex KdV Equation
下载PDF
导出
摘要 In this paper, we directly extend the applications of the Adomian decomposition method to investigate the complex KdV equation. By choosing different forms of wave functions as the initial values, three new types of realistic numerical solutions: numerical positon, negaton solution, and particularly the numerical analytical complexiton solution are obtained, which can rapidly converge to the exact ones obtained by Lou et al. Numerical simulation figures are used to illustrate the efficiency and accuracy of the proposed method.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第9期568-574,共7页 理论物理通讯(英文版)
基金 National Natural Science Foundation of China under Grant No.10735030 Shanghai Leading Academic Discipline Project under Grant No.B412 Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056 the Doctoral Foundation of Ningbo City under Grant No.2005A61030 K.C.Wong Magna Fund in Ningbo University
关键词 Adomian decomposition method complex KdV equation complexiton solution numerical complexiton solution 分解方法 络合物 方程式 数学
  • 相关文献

参考文献33

  • 1R.S. Johnson, Phys. Lett. A 72 (1979) 197.
  • 2M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Uni- versity Press, New York (1991).
  • 3N.C. Freeman, G. Horrocks, and P. Wilkinson, Phys. Lett. A 81 (1981) 305.
  • 4V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Heidelberg, Berlin (1991).
  • 5S.Y. Lou, J. Math. Phys. 35 (1994) 2390.
  • 6A.C. Newell, M. Tabor, and Y.B. Zeng, Physica D 29 (1987) 1.
  • 7R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.
  • 8W.X. Ma, Phys. Lett. A 301 (2002) 35
  • 9W.X. Ma and Y.C. You, Trans. Am. Math. Soc. 357 (2005) 1753.
  • 10S.Y. Lou, H.C. Hu, and X.Y. Tang, Phys. Rev. E 71 (2005) 036604.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部