期刊文献+

Parseval Theory of Complex Wavelet Transform for Wavelet Family Including Rotational Parameters 被引量:1

Parseval Theory of Complex Wavelet Transform for Wavelet Family Including Rotational Parameters
下载PDF
导出
摘要 A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(θ;μ;κ) is a two-mode rotational displacing-squeezing operator in the 〈η| representation. Based on this, the Parseval theorem and the inversion formula of RCWT have been proved. The concise proof not only manifestly shows the merit of Dirac's representation theory but also leads to a new orthogonal property of complex mother wavelets in parameter space.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第9期598-602,共5页 理论物理通讯(英文版)
基金 National Natural Science Foundation of China under Grant No.10647133 the Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]22
关键词 complex wavelet transform representation theory quantum mechanics 复合物 子波转换 量子力学 物理
  • 相关文献

参考文献1

二级参考文献18

  • 1P.A.M. Dirac, Principles of Quantum Mechanics, 3rd ed.,Clarendon Press, Oxford (1958).
  • 2Fan Hong-Yi, Phys. Lett. A 313 (2003) 343.
  • 3Fan Hong-Yi and LI Cao, Phys. Lett. A 325 (2004) 188.
  • 4Fan Hong-Yi and Wang Yong, Commun. Theor. Phys.(Beijing, China) 45 (2006) 819.
  • 5R. Bracewell, The Hilbert Transform, The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill, New York (1999) 267.
  • 6A. Papoulis, Hilbert Transforms, The Fourier Integral and Its Applications, McGraw-Hill, New York (1962) 198.
  • 7R.J. Glauber, Phys. Rev. 130 (1963) 152.
  • 8J.R. Klander and B.S. Skargerstam, Coherent States,World Scientific, Singapore (1985).
  • 9W.H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).
  • 10Fan Hong-Yi, H.R. Zaidi, and J.R. Klander, Phys. Rev.D 35 (1987) 1831.

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部