期刊文献+

基于视频处理的游梁支点位置度在线检测 被引量:1

Real-time measurement of pivot position based on video processing
下载PDF
导出
摘要 抽油机游梁支点的位置度是衡量抽油机设备安全、经济运行的重要指标。为克服传统位置度人工测试中动态误差大、效率低的缺点,本文提出一种基于视频图像的位置度测试方法,从标志、边线识别、标尺、目标跟踪、精度和速度等方面,详细讨论了测试方法。基于矩形标志物对边平行的特点,通过一维灰度矩算法和曲线拟合算法,准确地测定了标志物的图像尺寸,提高了标尺精度;利用亚像素匹配算法,提高了十字标志的匹配定位精度;利用搜索策略和卡尔曼滤波预测十字标志的运动轨迹,提高了匹配定位的速度。实验表明,这些措施保证了检测过程的实时在线完成。 The pivot position on beam oil pump is a primary specification to assess the facility security and power dissipation. In order to overcome the shortcomings of significant dynamic error and low efficiency of traditional manual measurements, a technique based on video image is presented, and the test algorithms are discussed in detail about the mark, cross line, scale, target tracking, accuracy and processing speed. According to the parallelism of opposite lines, the width of mark is acquired accurately using 1 st gray-level moment and curve fitting. Sub-pixel matching is utilized to improve the tracking precision. Search strategy and iterative Kahnan algorithm are used to predict the trajectories of the mark. Experiments show that the accuracy and speed are satisfied in the pivot position online measurements.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第10期2078-2083,共6页 Chinese Journal of Scientific Instrument
基金 国家“863”计划(2006AA04Z177)资助项目
关键词 支点位置度 在线测量 视频图像 灰度矩 亚像素模板匹配 卡尔曼滤波 pivot position real-time measurement video image gray moment template match in sub-pixel Kalman filtering
  • 相关文献

参考文献8

二级参考文献30

  • 1[3]Yang Yong, Zhong Binglin, et al.. A method of measuring large displacement and deformation with high precision. Journal of Southeast University (English Edition), 1998, 14(1).
  • 2Stauer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):747-757.
  • 3Ellis T, Xu M. Object detection and tracking in an open and dynamic world. In:Proceedings of the 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Hawaii:IEEE Press, 2001.
  • 4Mittal A, Huttenlocher D. Scene modeling for wide area surveillance and image synthesis. In:Computer Vision and Pattern Recognition (CVPR'00), IEEE Computer Society,2000. 2160-2167.
  • 5Renno J R, Orwell J, Jones G A. I.earning surveillance tracking models for the self-calibrated ground plane. In:British Machine Vision Conference, Cardi:British Machine Vision Association, 2002.
  • 6Nir Friedman,Stuart Russell. Image segmentation in video sequences: A probabilistic approach. In: Proceedings of the 13rd Conference on Uncertainty in Artificial Intelligence, 1997. 175-181.
  • 7Dieter Koller,Joseph Weber,Jitendra Malik. Robust multiple car tracking with occlusion reasoning. In: ECCV (1),Springer-Verlag, 1994. 189-196.
  • 8Rosin P L, Ellis T.Image difference threshold strategies and shadow detection.In:Proceedings of British Machine Vision Conference BMVC 1995,.Birmingham: Morgan Kaufmann Publishers,1995. 347-356.43.
  • 9Siebel N T, Maybank S J.Real-time tracking of pedestrians and vehicles.In:Proceedings of the 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance,Hawaii:IEEE Press,2001
  • 10Haritaoglu I, Harwood D,Davis L S. W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):809-830.

共引文献50

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部