期刊文献+

基于FP-tree最大频繁项集的FP-MFI算法研究 被引量:1

Research on Maximal Frequent Item FP-MFI Algorithm Based on FP-tree
下载PDF
导出
摘要 由于基于FP-tree的DMFIA算法在生成最大频繁项目集时会产生大量的候选频繁项集,通过改进传统的FP-tree结构,并提出了一种基于改进FP-tree的最大频繁模式挖掘算法FP-MFI,该算法不需要生成最大频繁候选项目集,改进的FP-tree是单向的,每个节点只保留了指向父节点的指针,可节约树空间。实验结果表明FP-MFI算法在数据库中频繁项目很多,而每一个事务中频繁项目很少的情况下,比同样基于FP-tree的DMFIA算法挖掘最大频繁项目集的效率更高。 Because of generating the candidate ones in the maximal frequent item-sets and it will bring on a batch of the candidate sets, through improving the traditional FP-tree structure and proposes the maximal frequent item-sets mining algorithm based on the improved FP- tree. It needn't to generate the candidate maximal frequent item-sets. The improved FP-tree is unilateralist, and each point saves the pointers of the parents', which will economize memory. It is shown in our experimental results that the FP-MFI algorithm is more effectively than the DMFIA also based on FP-tree in the mining maximal frequent item-sets when the frequent items are very much in database and they are so few in each transaction.
作者 郑海明
出处 《现代计算机》 2008年第10期37-39,63,共4页 Modern Computer
关键词 数据挖掘 关联规则 最大频繁项集 频繁模式树 Data Mining Association Rules Maximal Frequent Item FP-tree
  • 相关文献

参考文献5

二级参考文献20

  • 1冯志新,钟诚.基于FP-tree的最大频繁模式挖掘算法[J].计算机工程,2004,30(11):123-124. 被引量:18
  • 2[1]R Agrawal,T Imielinski, A Swami.Mining association rules between sets of items in large database[A]. Peter Buneman, Sushil Jajodia. Proceedings of SIGMID' 93 [ C ]. Washington, D· C: AC MPress, 1993:207-216.
  • 3[2]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation [ A ]. Anon. Proceedings of SIGMOD' 2000[ C ]. Dallas, Texas. USA: ACM Press, 2000:1- 12.
  • 4[3]D Burdick, M Calimlim, J Gehrke. A Maximal Frequent Itemset Algorithm for Transactional Database [ A ]. Anon. Proceedings of International Conference on Data Engineering 2001[ C ]. Heidelberg, Germany: IEEE Computer Society, 2001:443 -452.
  • 5[4]K Gouda, M J Zaki. Efficiently Mining Maximal Frequent Itemsets[ A ]. Nick Cercone, Tsau Young Lin, Xindong Wu.Proceedings of ICDM 2001 [ C ]. California, USA: IEEE Computer Society ,2001:163-170.
  • 6[5]Cormeet - 4 [ OL ]. http://www, almaden, ibm. com/cs/people/bayardo/resources, html.
  • 7Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 8Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 9R Agrawal, R Srikant. Fast Algorithms for Mining Association Rules. In Proceeding of the 20th VLDB Conferencei,Santiago, Chile, 1994.
  • 10Jiawei Han, Jian Pei, Yiwen Yin. Mining Frequent Patterns without Candidate Generation. In Proceeding of ACM SIG-MOD'00, May, 2000.

共引文献136

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部