期刊文献+

基于分形理论的股票时序数据离群模式挖掘研究 被引量:4

Outlier Pattern Mining of Stock Time Series with Fractal Theory
下载PDF
导出
摘要 针对股票时间序列的特点,从离群点对股票时序数据有序性的影响角度出发,在界定分形离群点含义的基础上,利用分形理论将离群模式挖掘理解为一个优化分割问题。采用推广G-P(Grassberger-Procaccia)算法计算股票时间序列数据集的多重分形广义维数,并利用贪婪算法的思想设计了FT-Greedy算法来求解基于分形理论的时间序列离群模式挖掘优化问题的解集。实验证明,该方法能有效地解决股票时间序列离群模式挖掘问题。 According to the characteristic of stock time series, outlier pattern mining is considered as an optimization segmentation problem by using fractal theory, based on the defining fractal outlier, from the viewpoint of outlier affecting orderliness of data set of time series. G-P (Grassberger-Procaccia) algorithm is used to calculate multi-fractal and general dimension. A greedy algorithm named FT-Greedy is designed to solve the optimization problems of outlier pattern mining of time series. The experiment shows that the method is feasible to solve the problems with outlier pattern mining of stock time series.
出处 《运筹与管理》 CSCD 2008年第5期135-140,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70571019 70771031) 国家教育部博士点基金(20060213004) 国防科工委基础科研资助项目(A2320060097) 哈尔滨工业大学技术政策管理国家哲学社会科学创新基地基金
关键词 数据挖掘 离群模式挖掘 分型理论 股票时序数据 data mining outlier pattern mining fractal theory stock time series
  • 相关文献

参考文献8

  • 1郑斌祥,席裕庚,杜秀华.基于离群指数的时序数据离群挖掘[J].自动化学报,2004,30(1):70-77. 被引量:15
  • 2Dasgupta D, Forrest S. Novelty detection in time series using Ideas from immunology[ C ]. In: Proceeding of the International Conference on Intelligent Systems, 1999, 82-87.
  • 3Shahabi C, Tian X, Zhao W. TSA-tree: a wavelet-based approach to improve the efficiency of muhi-ievel surprise and trend queries[ C]. Proc 12th International Conference on Scientific and Statistical Database Management (SSDBM 2000) , 2000. 55-68.
  • 4Keogh E, Lonardi S, Chiu B. Finding surprising patterns in a time series database in linear time and space[ C ]. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2002. 550-556.
  • 5Ma J, Perkins S. Time-series novelty detection using one-class support vector machines[ C ]. In: Proceedings of the International Joint Conference on Neural Networks, 2003.
  • 6薛安荣,何伟华.基于时序离群检测的新的分段方法[J].计算机工程与设计,2007,28(20):4875-4877. 被引量:3
  • 7Mandelbrot B. The fractal geometry of nature[ M]. San Francisco: Freeman, 1982.
  • 8http ://hexx. biog. hexun. com/12630508_d.html

二级参考文献16

  • 1陆声链,黄万华,林士敏.基于线性形态的时间序列异常模式挖掘[J].计算机与数字工程,2005,33(1):53-55. 被引量:1
  • 2Piatetsky-Shapiro G, Fayyad U, Smyth P. From data mining to knowledge discovery: An overview. In: Fayyad U,Piatetsky-Shapiro G, Smyth P et al Eds. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press,1996. 1~35
  • 3Barnet V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons, 1994
  • 4Edwin Knorr, Roymond Ng. Algorithms for mining distance-based outliers in large databases. In: Proceedings of the VLDB Conference, New York, USA: 1998. 392-403
  • 5Arning, Rakesh Agrawal, Raghavan P. A linear method for deviation detection in large database. In: International Conference on Knowledge Discovery in Databases and Data Mining (KDD-95), Portland, Oregon: AAAI Press,1996. 164~169
  • 6Bentley J L. K-d trees for semidynamic point sets. In: Proceedings of the 6th ACM Annual Symposium Computational Geometry, 1990. 187-197
  • 7Roussopoulos N, Kelley S, Vincent F. Nearest neighbor queries. In: Proceedings of ACM SIGMOD, San Jose,CA:1995. 71-79
  • 8Agrawal R, Lin K I, Sawhney H S, Shim K. Fast similarity search in the presence of noise, scaling, and translation in time series databases. In: Prococeedings of the 21st International Conference on Very Large Data Bases, 1995. 490~501
  • 9Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases. In: Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD'94),ACM Press,1994. 419-429
  • 10Berndt D J, Cliffod J. Finding patterns in time series: A dynamic programming approach. In: Fayyad U, PiatetskyShapiro G, Smyth P et al Eds. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996. 229~248

共引文献16

同被引文献65

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部