期刊文献+

像素域运动对象提取算法的研究 被引量:1

Research on Moving Object Extraction from Video Pixel Domain
下载PDF
导出
摘要 针对像素域运动对象的提取,较系统地分析比较了现有主要算法各自的原理、提取效果及时间特性,为研究者在各种不同的场合选择不同的提取算法提供了依据。为使算法具有可比性,实验在同一Hall_Monitor序列上进行。然后,提出一种改进的、同时进行帧间差分和减背景的运动对象提取算法,其鲁棒性在于能对光照变化、运动物体的暂停,显露部分的背景区域等复杂情况作出正确判断处理。 In view of extraction process, the principles, the extracted effects and extracted time attributions of the main algorithms about the moving object extraction ( MOE ) from video pixel domain are analyzed and compared. The contribulions lie in the selection rules of the appropriation algorithm for own uses according to different conditions. Simulation results are demonstrated, which are conducted on Hall-Monitor sequence. Then, a improved MOE algorithm is presented, which is based on frame difference and background subtraction simultaneously. Its robustness can deal with some complicated situations such as light change, the paused moving object in background and the uncovered background.
出处 《湖南工业大学学报》 2008年第6期50-54,共5页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(60572127) 湖南省自然科学基金资助项目(05JJ30113)
关键词 运动对象 提取 视频处理 像素域 moving object extraction video processing pixel domain
  • 相关文献

参考文献9

  • 1[1]Benezeth Y,Emile B,Rosenberger C.Comparative Study on Foreground Detection Algorithm for Human Detection[C]// Proceedings of the Fourth International Conference on Image and Graphics.America:IEEE Computer Society,2007:661-666.
  • 2刘李杰,蔡德钧,翁南钐.一种面向运动的视频对象分割算法[J].计算机学报,2000,23(12):1326-1331. 被引量:11
  • 3沈未名,江柳,种衍文.视频对象分割及跟踪方法研究[J].武汉大学学报(信息科学版),2004,29(3):274-277. 被引量:2
  • 4[4]Elgarnmal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using non-parametric kernel density estimation for visual surveillance[C]//Proceedings of IEEE.America:IEEE Computer Society,2002:1151-1163.
  • 5[5]Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking:Proceedings of CVPR[C]// Proceedings of Computer Vision and Pattern Recognition.America:IEEE Computer Society,1999:246-252.
  • 6[6]Ju Han Bhanu B.Detecting moving humans using color and infrared video[C]//Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.America:IEEE Computer Society,2003:228-233.
  • 7[7]Haritaoglu I,Harwood D,Davis L.W 4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,28(8):809-830.
  • 8[8]Caplier A,Bonnaud L,Chassery J M.Robust Fast Extraction of Video Objects Combining Frame Differences and Adaptive Reference Image[J].Image Processing,2001(2):785-788.
  • 9[9]Chien ShaoYi,Huang YuWen,Hsieh BingYu,et al.Fast Video Segmentation Algorithm with Shadow Cancellation,Global Motion Compensation,and Adaptive Threshold Techniques[J].IEEE Transactions on Multimedia,2004,6(5):732-748.

二级参考文献6

共引文献11

同被引文献3

  • 1Tikhnonov A, Arsenin V. Solutions of Ill-Posed Problems [M]. NewYork: Halsteed Press, 1977.
  • 2Rudin L, Osher S, Fatemi E. Nolinear Total Variation Based on Noise Removal Algorithm[J]. Physica D, 1992, 60: 259- 268.
  • 3Lysaker M, Lundervold A, Tai X. Noise Removal Using Fourth-Order Partial Differential Equations with Applications to Medical Magnetic Resonance Images in Space and Time[J]. IEEETrans. Image Process, 2003, 12(12) : 1579-1590.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部