摘要
文章针对如下反应网络■用解析法研究了等温的催化剂颗粒中以选择性最大为目标的活性分布优化问题。式中,f_1(C_A)、f_3(C_A)为任意动力学函数,而 f_2(C_B)为正幂式。分析表明,欲使 B 的选择性最大,应把活性物集中在粒内某特定位置的薄层中,即最优活性分布为 Dirac δ—函数。该薄层在粒内的最佳位置ξ_(OPt)取决于有关的物化参数,可通过一个无因次数μ_(opt)用简单的代数表达式进行计算。
The general problem of optimal activity distribution aimed at maximizing the selectivity of isothermal catalyst pellets was analysed and solved analytically for parallel-consecutive reaction net- work with arbitrary kinetic function f_1(C_A)and f_3(C_A),and positive-exponential type kinetic function f_2(C_B).It was found that selectivity may be maximized by concentrating the active components in a specific zone either for flat,cylindrical or spherical pellets,It means that the optimal activity dis- tribution is a Dirac δ-function.The optimun location of the active zone,ξ_(opt),can be expressed ana- lytically in terms of a single dimensionless unmber μ_(opt),which contains all the pertinent physico- chemical parameters.
出处
《化学反应工程与工艺》
CAS
CSCD
北大核心
1990年第3期10-18,共9页
Chemical Reaction Engineering and Technology
关键词
催化剂
选择性
活性分布
反应网络
Optimal activity distribution
Selectivity maximization
Parallel-consecutive reaction network