期刊文献+

基于Gabor变换和LMBP神经网络的车牌汉字字符识别 被引量:3

Recognition of License Plate Chinese Character Based on Gabor Filters and BP Neural Networks
下载PDF
导出
摘要 字符识别是汽车牌照自动识别系统中的关键环节,汉字字符识别是其中的难点。提出用Gabor滤波器对灰度汉字图像抽取横、竖、撇、捺的4幅能量特征图像的方法,同时对Gabor滤波器组输出值进行非线性变换,使其适应于不同亮度和低质量灰度车牌字符图像的识别,最终采用网络法提取4幅能量特征图像的特征,用改进的BP神经网络作为车牌汉字字符的识别器,提高车牌识别率。 Character recognition is the key of recognition systems for license plate, and Chinese character recognition is the most difficult point. A kind of method that the gray character image is transformed into horizontal, vertical, chargeoffs, Na energy feature image by Gabor filters is proposed. Non-linear transformation is designed to regulate the outputs of Gabor filters adaptively which is used to improve the performances for low quality images. Finally we rely on network method for feature extraction and advanced BP neural network as the classification to enhance the rate of the recognition of license plate Chinese character.
出处 《湖南工业大学学报》 2008年第5期94-96,共3页 Journal of Hunan University of Technology
关键词 车牌汉字识别 GABOR变换 非线性变换 LMBP神经网络分类器 recognition of license plate Chinese character Gabor Filters non-linear transformation BP neural network
  • 相关文献

参考文献7

二级参考文献39

  • 1何国金,胡德永.卫星遥感数据的信息论理解[J].地质科技情报,1997,0(S1):44-48. 被引量:3
  • 2韦娜,耿国华,周明全.利用Gabor滤波器的基于内容的图像检索[J].计算机工程,2005,31(8):10-11. 被引量:13
  • 3MartinHaganT HowardDemuthB MarkBealeH 戴葵 等译.Neural Network design [M].北京:机械工业出版社,2002..
  • 4[1]J G Daugman.Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two dimensional visual cortical filters [J].J Opt Soc Am A,1985,2(7):1160-1169.
  • 5[2]Wang X W,et al.A gray scale image based character recognition algorithm to low quality and low resolution Images [A].Document Recognition and Retrieval VIII,Electronic Imaging 2001 [C].San Jose:IS&T/SPIE,2001.
  • 6[3]L Wang,et al.Pavlidis.Direct gray scale extraction of features for character recognition [J].IEEE Trans on PAMI,1993,15(10):1053-1066.
  • 7[4]Zhang J Y,et al.Multi scale feature extraction and nested subset classifier design for high accuracy handwritten character recognition [A].Proc ICPR'2000 [C].Barcelona:IAPR,2000.
  • 8[5]J Mao,et al.Artificial neural networks for feature extraction and multivariate data projection [J].IEEE Trans on Neural Networks,1995,6(2):296-317.
  • 9[6]O D Trier,et al.Goal directed evaluation of binarization methods [J].IEEE Trans on PAMI,1995,17(12):1191-1201.
  • 10[7]H Kamada,et al.High speed,high accuracy binarization method for recognizing text in images of low spatial resolutions [A].Proc ICDAR'99 [C].Bangalore:IAPR,1999.139-142.

共引文献141

同被引文献32

引证文献3

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部