期刊文献+

一类对称正交多带小波的构造 被引量:1

On The Construction of a Class of Orthogonal Symmetric Multi-band Wavelet
原文传递
导出
摘要 本文考滤了一类多带正交对称小波滤波器对应多相矩阵分解结构,系统地构造了一类具有自由参数多带小波滤波器簇,以4带小波为例得到了用参数角表示的一类正交对称滤波器序列. In this paper, we consider the factorization of polyphase matrix of a class of orthogonal symmetric multi-band wavelet filter banks,and construct a class of filter bank with freedom parameter. At last, example of 4-band orthogonal symmetric filter bank is provided by angle parameter.
出处 《应用数学学报》 CSCD 北大核心 2008年第4期682-691,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571049,10871065) 湖南省教育厅基金(06A036)资助项目.
关键词 多带小波 尺度函数 正交对称 多相矩阵 滤波器 multi-band wavelet scaling function orthogonal and symmetric polyphase matrix filter bank
  • 相关文献

参考文献10

  • 1Doubechies I. Orthonormal Bases Of Compactly Supported Wavelet. J. Comm. Pure Appl. Math., 1988, 41:909-996.
  • 2Vaidyanathan P P, Nguyen T Q, Doganata I, et al. Improved Technique for Design of Perfect Reconstruction FIR QMF banks with Loss-less Polyphase Matrices. J. IEEE Trans Assp,1989, 37(7): 1057-1071.
  • 3Zou H, Tewfik A H. Discrete Orthonomal M-Band Wavelet Decoposions: In: Pro Int Conf Acoust, Speech, Sig Proc, San Francisco, CA, 1992, 4:605-608.
  • 4Steffen P, Heller P, Copinath R A, Burrus C S, et al. Theory of regular M-band Wavelet Bases. J: IEEE Trans Signal Processing, 1993, 41(12): 3497-3510.
  • 5Chui C, Lian J A. Construction of Compactly Supported Symmtric and Antisymmetric Orthonormal Wavelets with Scale-3. J. Appl. Comput. Harman Anal., 1995, 2:68-84.
  • 6Beloygav E, Wang Y. Compactly Supported Orthogonal Symmetric Scaling Functions. J. Appl. Comput. Harmon Anal., 1999, 7:137-150.
  • 7Peng L Z, Wang Y G. Algebraic Structure and Parametrization for Orthogonal Wavelet of 3-band. J.Scienee in China (Series A), 2001, 7(31): 602-614 (in Chinese).
  • 8Peng L Z, Wang Y G. On Construction of Compactly Orthogonal Wavelet with Beautiful Structure. ,l. Science in China (Series E), 2004, 34(2): 200-210 (in Chinese).
  • 9Han B. Symmetric Orthonormal Bases of Compactly Supported Wavelets with Diilation Factor 4. J. Adv, Comput Math., 1998, 8:221-247.
  • 10Tian J, Wells R O. A Fast Implementation of Wavelet Tranform for M-Band Filter Banks. J. Proc. SPIE, 1998, 3391:534-545.

同被引文献8

  • 1Lebrun J, Vettcrli M. Balanced muhiwavelets theory and design[J]. 1EEETranson Signal Processing, 1998, 46(4): 1 119-1 125.
  • 2Jiang Q T. Parameterization of m-channel orthngonal muhifiher banks[J]. Advances in Computational Mathematics, 2000, 12: 189-211.
  • 3Chui C K, l,iun J A. A study of orthogonal multi-wavelets[J]. Appt Numer Math, 1996, 20(3): 273-298.
  • 4Lebrun J, Vctterli M. High order balanced multiwavclets[C]. In Proc IEEE int Conf Acoust Speech Signal Proce(ICASSP), 1998: 12-15.
  • 5Lebrun J, Vetterli M. Balanced muhiwavelets[C]. In Proc IEEE int Conf Acoust Speech Signal Proce(ICASSP), 1997, 3: 2473-2476.
  • 6DAUBECHIES I.小波十讲[M].李建平译.北京:国防工业出版社出版,2004.
  • 7崔丽鸿,程正兴.多小波与平衡多小波的理论和设计[J].工程数学学报,2001,18(F12):105-116. 被引量:23
  • 8杨守志,唐远炎,程正兴.α尺度紧支撑正交多小波的构造[J].计算数学,2002,24(4):451-460. 被引量:22

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部