期刊文献+

不完全信息下的一种信用分类方法 被引量:3

A Credit Classification Method for Incomplete Information
下载PDF
导出
摘要 本文详细分析了一类典型的不完全信息的信用评价问题,即存在信用参考信息不完全或样本数据较少,以及某些指标数据为区间数等。文章首先考虑具有不完全信用参考信息的情况,在分析这类问题特性的基础上,基于数据包络分析理论(DEA),提出一种以拒绝案例集构造参考单元集的方法,并给出了相应的DEA模型。然后,进一步考虑带有较为复杂区间指标数据这类具有不完全指标信息的信用评价问题,并给出了相应的信用分析方法,最后采用算例说明本文提出方法的合理性。由于所提方法能有效地处理信用信息不完全和指标数据不完全的情况,故其具有较为广泛的实用性。 This paper analyzes a typical credit evaluation problem with incomplete information, such as in- complete credit reference information and interval data. After analyzing the problem with incomplete credit reference information and the characteristics of the problem, one method based on data envelopment analysis (DEA) theory is presented to set a new reference cells with the collection of rejection cases, and a corresponding DEA model is proposed. Moreover, considering credit evaluation measures in the presence of complicated interval index value, a credit classification method is shown. And a numeric example is em- ployed to illustrate the method. Since the present method can effectively solve the credit evaluation problem with incomplete credit reference information and interval data, it can be easily integrated into many practical applications.
作者 许皓 徐晓燕
出处 《中国管理科学》 CSSCI 2008年第5期157-163,共7页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70772025) 教育部社科项目
关键词 信用评价 不完全信息 数据包络分析(DEA) 区间数据 credit evaluation incomplete information data envelopment analysis (DEA) interval data
  • 相关文献

参考文献19

  • 1Cover, T. M, Hart, P.E. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967,13(1): 21--27.
  • 2Liu Oaojun, Zhu Yah. Credit Assessment of Contractors: A Rough Set Method[J]. Tsinghua Science and Technology, 2006, (6) : 354--362.
  • 3Young--Chan Lee. Application of support vector machines to corporate credit rating prediction [J]. Expert Systems with Applications, 2007, (33): 67-74.
  • 4Lean Yu, Shouyang Wang, Kin Keung Lai. Credit risk assessment with a multistage neural network ensemble learning approach[J]. Expert Systems with Applications, 2008, (34) : 1434-- 1444.
  • 5Amir F. Atiya. Bankruptcy prediction for credit risk using neural networks: A survey and new results[J]. IEEE Transactions on Neural Networks, 2001, (12) : 929--935.
  • 6吴德胜,梁樑.遗传算法优化神经网络及信用评价研究[J].中国管理科学,2004,12(1):68-74. 被引量:42
  • 7Desai, V.S. , Crook, J. N, Overstreet, G.A. A com parison of neural networks and linear scoring models in the credit union environment[J]. European Journal of Operational Research, 1996,(95): 24--37.
  • 8West, D. Neural network credit scoring models[J]. Computers and Operations Research, 2000, (27) : 1131 --1152.
  • 9A.B. Emel, M. Oral, A. Reisman, R. Yotalam A credit scoring approach for the commercial banking sector [J]. Socio-Economie Planning Sciences, 2003, (37) :103--23.
  • 10E. W. L. Cheng, Y.H. Chiang, B.S. Tang. Alternative approach to credit scoring by DEA: Evaluating borrowers with respect to PFI projects [J]. Building and Environment,2007, (42) : 1752-- 1760.

二级参考文献10

共引文献63

同被引文献32

  • 1郭均鹏,吴育华.区间数据包络分析的决策单元评价[J].系统工程理论方法应用,2004,13(4):339-342. 被引量:23
  • 2李汶华,郭均鹏.基于决策者满意度的区间DEA的求解[J].管理工程学报,2005,19(1):87-89. 被引量:7
  • 3Cooper, W. W., Park, K. S., Yu, G.. IDEA and AR-IDEA: Models for dealing with imprecise data in DEA [J]. Management Science, 1999, 45 (4): 597- 607.
  • 4Lee, Y. K. , Park, K. S. , Kim, S. H.. Identification of inefficiencies in an additive model based IDEA (imprecise data envelopment analysis) [J]. Computers and Operations Research, 2002, 29 (12).. 1661--1676.
  • 5Zhu, J.. Imprecise data envelopment analysis (IDEA) : A review and improvement with an application [J]. European Journal of Operational Research, 2003, 144 (3) :513--529.
  • 6Kao, C.. Interval efficiency measures in data envelopment analysis with imprecise data [J].European Journal of Operational Research, 2006, 174 (2): 1087-1099.
  • 7Despotis, D. K. , Smirlis, Y. G.. Data envelopment analysis with imprecise data [J]. European Journal of Operational Research, 2002, 140 (1) : 24- 36.
  • 8Zhu, J. , Cook, W. D.. Modeling Data Irregularities andStruetural Complexities in Data Envelopment Analysis [M]. Berlin.. Springer, 2007.
  • 9Amirteimoori, A. , Kordrostami, S.. Multi-component efficiency measurement with imprecise data [J]. Applied Mathematics and Computation, 2005, 162 (3): 1265- 1277.
  • 10D.K. Despotis, Y.G. Smirlis. Data Envelopment Analysis with Imprecise Data[J].European Journal of Operational Research,2002,(140).

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部