摘要
Eu^2+-doped ternary nitride phosphor, Sr2Si5N8:Eu^2+, was synthesized using the high temperature solid-state method. The X-ray diffraction (XRD) pattern showed that Sr2Si5N8 single phase was obtained. The lattice parameters shrank because the radius of Eu^2+ was smaller than that of Sr^2+. The emission spectra showed a broad emission band. With an increase in Eu^2+ concentration, the emission peak position was redshifted. The excitation spectra showed two excitation bands originating from the host and the 4f^7→4f^6 5d^1 transition of Eu^2+ ions Compared with the luminescent characteristic of Sr2Si5N8:Eu^2+ and CaS:Eu^2+ phosphors, at different temperatures, it was noted that the intensity of the two phosphors reduced gradually with an increase in temperature. The intensity of Sr2Si5N8:Eu^2+ phosphor was stronger than that of CaS:Eu^2+, which indicated that the luminescent characteristic of the former was better than that of the latter.
Eu^2+-doped ternary nitride phosphor, Sr2Si5N8:Eu^2+, was synthesized using the high temperature solid-state method. The X-ray diffraction (XRD) pattern showed that Sr2Si5N8 single phase was obtained. The lattice parameters shrank because the radius of Eu^2+ was smaller than that of Sr^2+. The emission spectra showed a broad emission band. With an increase in Eu^2+ concentration, the emission peak position was redshifted. The excitation spectra showed two excitation bands originating from the host and the 4f^7→4f^6 5d^1 transition of Eu^2+ ions Compared with the luminescent characteristic of Sr2Si5N8:Eu^2+ and CaS:Eu^2+ phosphors, at different temperatures, it was noted that the intensity of the two phosphors reduced gradually with an increase in temperature. The intensity of Sr2Si5N8:Eu^2+ phosphor was stronger than that of CaS:Eu^2+, which indicated that the luminescent characteristic of the former was better than that of the latter.
基金
the National Hi-Tech. R&D Program of China (863 Program, 2006AA03A133)
Science and Technology Plan of Beijing (D040400304032)