期刊文献+

一种求解最大团问题的并行交叉熵算法 被引量:5

Leader-Based Parallel Cross Entropy Algorithm for Maximum Clique Problem
下载PDF
导出
摘要 为了提高交叉熵算法求解最大团问题(maximum clique problem,MCP)的性能,提出一种领导者-跟随者协作求解的并行策略来实现交叉熵算法,从而达到减少计算时间和保障解的质量这两方面的平衡.算法中领导者活跃在并行处理器之间采集数据,并根据当前获得信息对跟随者作出决策;受控的跟随者则主要根据领导者的决策信息自适应地调整搜索空间,完成各自的集团产生任务.采用了OpenMPI在MIMD平台上实现了该算法,并应用到MCP基准测试问题上.加速比和效率分析结果表明,算法具有很好的加速比和效率.而与其它几种当前最好的启发式算法相比,结果表明算法相对于基于种群的启发式算法有一定的性能改善. The Cross Entropy method is a new search strategy for combinatorial optimization problems. However, it usually needs considerable computational time to achieve good solution quality. This paper introduces a Cross Entropy algorithm for solving maximum clique problem (MCP). To make the Cross Entropy algorithm faster, this paper proposes a leader-based cooperative parallel strategy. Unlike the widely used coarse-grained parallel strategy, our method has a leader, who can move around the parallel processors and collect data actively, and several followers whose main job are simply to sample the cliques guided by the leader via transition matrix. To evaluate the performance of the algorithm, this paper implements the algorithm using OpenMPI on MIMD architecture, and applies it on the MCP benchmark problems. The speedup and efficiency are analyzed, and the results are compared with those obtained by four other best heuristic algorithms. The results show that the presented method has achieved good performance among those best population-based heuristics.
出处 《软件学报》 EI CSCD 北大核心 2008年第11期2899-2907,共9页 Journal of Software
基金 Supported by the National Research Foundation for the Doctoral Program of Ministry of Education of China(国家教育部博士点基金) the Natural Science Foundation of Jiangsu Province of China under GrantNo.BK2003030(江苏省自然科学基金)
关键词 交叉熵方法 最大团问题 并行计算 Cross Entropy method maximum clique problem parallel implementation
  • 相关文献

参考文献21

  • 1Rubinstein RY. The cross-entropy method for combinatorial and continous optimization. Methodolgy and Computing in Applied Probality, 1999,2:127-190.
  • 2Rubinstein RY, Kroses DP. The cross-entropy method, a unified approach to combinatorial optimization. Monte-Carlo Simulation and Machine Learning. Springer-Verlag, 2004.
  • 3Karp RM. Reducibility among combinatorial problems, In: Miller RE, Thatcher JW, eds. Complexity of Computer Computations. Plenum Press, 1972.
  • 4Bomze IM, Budinich M, Pardalos PM, Pelilo M. The maximum clique problem. In: Du DZ, ed. Handbook of Combinatorial Optimization. 1999. 1-74.
  • 5Pevzner PA, Sze SH. Combinatorial approaches to finding subtle signals in dna sequences. In: Proc. of the Int'l Conf. on Intelligent Systems for Molecular Biology. AAAI Press, 2000. 269-278.
  • 6Ji YM, Xu X, Stormo GD. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics, 2004,20(10):1591-1602.
  • 7Website. http://dimacs.rutgers.edu/challenges/
  • 8Battiti R, Protasi M. Reactive local search for the maximum clique problem. Algorithmica, 2001,29(4):610-637.
  • 9Busygin S. A new trust region technique for the maximum weight clique problem. Discrete Mathematics, 2006,154(15 ):2080-2096.
  • 10Grosso A, Locatelli M, Croce FD. Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics, 2004,10(2): 135-152.

同被引文献60

  • 1潘全,郭鸣,林鹏.基于MapReduce的最大团算法[J].系统工程理论与实践,2011,31(S2):150-153. 被引量:5
  • 2郭秀萍,杨根科,吴智铭.一种混合自适应多目标Memetic算法[J].控制与决策,2006,21(11):1234-1238. 被引量:6
  • 3Hlstad J. Clique is hard to approximate within n^1-δ[J].Acta Mathematica, 1999, 182(1): 105-142.
  • 4Bui T N, Eppley P H. A hybrid genetic algorithm for the maximum clique problem[C]. Proc of the 6th Int Conf on Genetic Algorithms Table of Contents. San Francisco: Morgan Kaufmann Publishers, 1995: 478-484.
  • 5Balas E, Niehaus W. Optimized crossover-based genetic algorithms for the maximum cardinality and maximum weight clique problems[J]. J of Heuristics, 1998, 4(2): 107- 122.
  • 6Marchiori E. Genetic, iterated and multistart local search for the maximum clique problem[C]. Proc of the Applications of Evolutionary Computing on EvoWorkshops. London: Springer-Verlag, 2002:112-121.
  • 7Zhang Q F, Sun J Y, Tsang E, An evolutionary algorithm with guided mutation for the maximum clique problem[J]. IEEE Trans on Evolutionary Computation, 2005, 9(2): 192-200.
  • 8Battiti R, Protasi M. Reactive local search for the maximum clique problem[J]. Algorithmica, 2001, 29(4): 610-637.
  • 9Hansen P, Mladenovic N, Urosevic D. Variable neighborhood search for the maximum clique[J]. Discrete Applied Mathematics, 2004, 145(1): 117-125.
  • 10Katayama K, Hamamoto A, Narihisa H. An effective local search for the maximum clique problem[J]. Information Processing Letters, 2005, 95(5): 503-511.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部