期刊文献+

基于智能算法的制造系统通用作业调度方法 被引量:4

Universal Shop Scheduling Method for Manufacturing System with Evolution Algorithm
下载PDF
导出
摘要 通过生产实际情况分析,提出了制造系统通用作业调度问题(USP)概念,开发了混杂蚁群算法(HACO),对USP进行求解,并与采用遗传算法所得解进行了对比.算例研究采用75×20个标准算例,以工件的加工流程时间最小化为目标函数,分别运用运算代数和解集收敛度为结束条件.计算结果表明,在计算代数相同时,HACO算法更容易使解域集中;在得到同等收敛度时,HACO算法的计算时间更短. The concept of universal shop scheduling problem (USP) was proposed based on the analysis of a real production system. A hybrid ant colony optimization (HACO) was developed to be applied to the USP. The results were compared with those of genetic algorithm. The numerical experiments make use of several benchmark instances whose scale is up to 75× 20. Minimizing makespan is taken as the objective function. Both termination conditions of computation generation and solution convergence are tested for the computation. From the numerical experiments, it can be seen that when the computation generation is kept the same, HACO will make the solutions more convergent, and when the convergency is kept the same, HACO will consume less time.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第10期1608-1612,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50575137) 浙江省自然科学基金资助项目(Y607470) 宁波市自然科学基金资助项目(2008A610036)
关键词 通用作业调度问题 智能算法 遗传算法 蚁群算法 universal shop scheduling problem (USP) intelligent algorithm genetic algorithm ant colo-ny optimization sequencing
  • 相关文献

参考文献8

  • 1Liaw C F. Scheduling two-machine preemptive open shops to minimize total completion time [J]. Computers and Operations Research, 2004, 31(8) : 1349-1363.
  • 2夏蔚军,吴智铭,张伟,杨根科.微粒群优化在Job-shop调度中的应用[J].上海交通大学学报,2005,39(3):381-385. 被引量:15
  • 3Lina H T, Liao C J. A case study in a two-stage hybrid flow shop with setup time and dedicated machines [J]. International Journal of Production Economics, 2003, 86(2): 133-143.
  • 4Ferrell W, Sale J, Sams J, et al. Evaluating simple scheduling rules in a mixed shop environment [J]. Computers and Industrial Engineering, 2000, 38 (1) : 39-66.
  • 5Giaro K, Kubale M. Compact scheduling of zero-one time operations in multi-stage systems [J]. Discrete Applied Mathematics, 2004, 145 (1): 95-103.
  • 6Su L H, Chou F D, Ting W C. Minimizing makespan in a two-stage system with flowshop and open shop [J]. Computers & Industrial Engineering, 2005, 49 (4): 520-536.
  • 7张宗永,孙静,谭家华.蚁群算法的改进及其应用[J].上海交通大学学报,2002,36(11):1564-1567. 被引量:20
  • 8Beasley J E. Flowshopl [EB/OL]. (2006-09) [2007-07]. http://www. brunel. ac. uk/depts/ma/research/

二级参考文献15

  • 1Dorigo M, Caro G D. The ant colony optimization meta-heuristic[A]. New ldeas in Optimization[C].London:McGraw-Hill,1999.1-27.
  • 2Dorigo M, Gambardella L M. Ant colonies for the travelling salesman problem[J].BioSystems, 1997,43:73-81.
  • 3Jayaraman V K, Kulkarni B D, Karale S, et al. Ant colony framework for optimal design and scheduling of batch plants[J]. Computers and Chemical Engineering, 2000,7(24):1901-1912.
  • 4Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy[J].Future Generation Computer Systems, 2000,6(16):851-871.
  • 5Adams J, Balas E, Zawack D. The shifting bottleneck procedure for job shop scheduling [J]. Management Science, 1988, 34:391-401.
  • 6Kolonko M. Some new results on simulated annealing applied to the job shop scheduling problem [J].European Journal of Operational Research, 1999,113:123-136.
  • 7Pezzella F, Merelli E. A tabu search method guided by shifting bottleneck for the job shop scheduling problem [ J ]. European Journal of Operational Research, 2000, 120:297-310.
  • 8Aiex R M, Binato S, Resende M G C. Parallel GRASP with path-relinking for job shop scheduling [J]. Parallel Computing, 2003, 29: 393-430.
  • 9Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. Proceedings of Congress on Evolutionary Computation [C]. Washington DC, USA:[s.n.], 1999, 3:1945-1950.
  • 10MuthJF, Thompson G L. Industrial scheduling [M]. Englewood Cliffs, NJ: Prentics Hall, 1963.

共引文献33

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部