期刊文献+

一种低复杂度的基于加权速率和最大化的多用户MIMO系统调度算法

A Low Complexity Maximum Weighted Sum-rate Based Scheduling Algorithm in Multi-user MIMO System
下载PDF
导出
摘要 针对多用户多输入多输出系统中,基于脏纸编码的迭代注水算法加权速率和最大化复杂度很高的问题,提出了一种基于迫零-脏纸编码的低复杂度多用户资源调度算法.该算法在发射功率限制条件下,结合功率分配和多用户调度,根据信道状态信息构造用户选择参量,依次选择用户.由于只需要有限次循环,同时根据用户摒弃准则去除了信道状态不好的用户,从而降低了复杂度.仿真结果表明,所提出的算法与迭代注水算法相比,在相同的仿真条件下,可以获得后者90%以上的加权速率和,随着用户数的增加,加权速率和性能趋向于后者,同时复杂度由与用户数的平方成正比降到了与用户数成正比. To solve the problem that the dirty-paper coding based iterative water-filling algorithm to maximize weighted sum-rate has high complexity in multi-user multi-input multi-output (MIMO) system, a low complexity zero-forcing dirty-paper coding based multi-user resource scheduling algorithm was proposed. Under the transmit power constraint, the proposed algorithm combines power allocation and user scheduling. Users are selected in sequence based on the user-selection parameters which are constructed using the channel state information. The proposed algorithm only needs finite repetitions, and can drop off those users with poor channel quality through the user-rejection criteria. Therefore the complexity is reduced. The simulation results show that, compared to the iterative water-filling algorithm, the proposed algorithm achieves more than 90% weighted sum-rate of the iterative water-filling algorithm under similar simulation conditions. With the increasing user number the weighted sum-rate of the proposed algorithm approximates to that of the iterative water-filling algorithm. And the complexity is reduced from the one in proportion to the square of number of users to the one in proportion to the number of users.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第10期1749-1753,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60572157)
关键词 多输入多输出 多用户 调度 加权速率和 multi-input multi-output(MIMO) multi-user scheduling weighted sum-rate
  • 相关文献

参考文献8

  • 1Costa M. Writing on dirty paper[J]. IEEE Transactions on Information Theory, 1983, 29(3):439-441.
  • 2Caire G, Shamai S. On the achievable throughput of a multi-antenna Gaussian broadcast channel [J]. IEEE Transactions on Information Theory, 2003, 49 (7) : 1691-1706.
  • 3Yeh E, Cohen A. Information theory, queueing, and resource allocation in multi-user fading communications [C]// Proceedings of the 2004 Conference on Information Sciences and Systems. Princeton, NJ: IEEE, 2004: 1396-1401.
  • 4Viswanath P, Tse D, Laroia R. Opportunistic beamfoming using dumb antennas[J]. IEEE Transactions on Information Theory, 2002, 48(6) : 1277-1294.
  • 5Kobayashi M, Caire G. An iterative waterfilling algorithm for maximum weighted sum-rate of gaussian MIMO-BC[J]. IEEE J Select Areas Commun, Special Issue on Nonlinear Optimization, 2006 , 24 (8): 1640- 1646.
  • 6Liu J, Hou T. Weighted proportonal fairness capacity of gaussian MIMO broadcast channels[C]// Proceedings of IEEE INFOCOM. Phoenix, AZ: IEEE, 2008: 385-393.
  • 7Shi S Y, Schubert M, Boche H. Weighted sum-rate optimization for multiuser MIMO Systems[C]//Information Sciences and Systems 41st Annual Conference. Baltimore, MD USA: IEEE, 2007: 425-430.
  • 8Dimic G, Sidiropoulos D. On downlink beamforming with greedy user selection: Performance analysis and a simple new algorithm[J]. IEEE Transactions on Signal Processing, 2005, 53(10) :3857-3868.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部