期刊文献+

EBP50影响HeLa细胞微丝骨架的分布和定位 被引量:4

EBP50 Influences Distribution and Localization of Microfilament Cytoskeleton in Cultured HeLa Cells
下载PDF
导出
摘要 目的:通过研究与膜-细胞骨架连接蛋白(ezrin-radixin-moesin,ERM)家族相结合的磷酸化蛋白50(ERM-binding phospho-protein-50,EBP50)对HeLa细胞微丝骨架含量、分布的影响及受血小板源性生长因子PDGF(platelet-derived growth factor)刺激后,微丝骨架在细胞中定位的变化及微丝骨架定位变化与EBP50的关系,阐明EBP50蛋白影响肿瘤细胞生长迁移的分子机制。方法:将pBK-CMV-HA空载体和pBK-CMV-HA-EBP50wt重组质粒分别转染HeLa细胞系,G418进行稳定表达细胞系的筛选,并用Western免疫印迹方法进行蛋白表达的鉴定;利用Western免疫印迹、免疫荧光细胞化学染色等方法结合光镜和激光共聚焦扫描显微镜分别观察和分析HA-HeLa与HA-EBP50-HeLa微丝骨架的含量及分布的异同;然后使用10ng/ml和20ng/mlPDGF37℃刺激细胞15min后,分别观察及分析两组细胞微丝骨架的分布情况及EBP50在细胞中定位的变化。结果:Western免疫印迹鉴定证实转染的外源性EBP50cDNA片段可在HeLa细胞系中成功表达EBP50蛋白,证明获得稳定表达EBP50蛋白的HeLa细胞系。Western免疫印迹及免疫荧光结果证实,转染空载pBK-CMV-HA的HeLa细胞微丝骨架粗大疏松,方向不一,交错排列;与其相比,EBP50虽然对HeLa细胞微丝骨架的含量没有明显影响,但能够促使细胞微丝骨架呈致密细丝状,平行规则排列,并沿细胞极性分布;并且在PDGF刺激下,EBP50能够与微丝骨架一起自胞浆迁移至膜上,并共定位。结论:EBP50能改变HeLa细胞微丝骨架的分布。在受到PDGF刺激时,EBP50还能使HeLa细胞系的微丝骨架定位于膜表面。EPB50可能通过影响微丝骨架的分布和定位来发挥其影响肿瘤细胞生长迁移的功能。 Objective: To explore the influence of EBP50 (ezrin-radixin-moesin-binding phospho-protein-50) on microfilament cytoskeleton content and distribution in cultured HeLa cells, to investigate the relationship between the changes in microfilament cytoskeleton localization and EBP50 after PDGF (platelet-derived growth factor) stimulation, and to further clarify the molecular mechanism by which EBP50 suppresses tumor cell proliferation and migration..Methods: pBK-CMV-HA-EBP50 wild type recombinant plasmid and pBK-CMV-HA empty vector were transfected into HeLa cells. G418 at 350mg/L was used to screen for cell clones stably expressing EBP50. Western blot was carried out to detect EBP50 expression. Similarities and differences in microfilament cytoskeleton content and distribution in HeLa cells transfected with pBK-CMV-HA-EBP50 wild type recombinant plasmid or pBK-CMV-HA empty vector were analyzed by Western blot, fluorescence staining and confocal microscopy. HeLa cells stably transfected with the pBK-CMV-HA-EBP50 wild type recombinant plasmid and the pBK-CMV-HA empty vector were also treated with PDGF (10 ng/ml and 20 ng/ml, 37℃, 15min) and stained by rhodamine-labeled phalloidin to observe the distribution of microfilament cytoskeleton in the two groups. EBP50 protein distribution in PDGF-stimulated HeLa cells was detected by immunofluorescence. Results: Western blot results confirmed that the EBP50 cDNA fragment could express EBP50 in cul- tured HeLa cell lines and that cell lines stably expressing EBP50 were successfully obtained. Western blot and fluorescence results showed that in the cell line transfected with empty vector, the microfilament cytoskeleton was thick, loose, multidirectional and displayed crossing arrangements. The content of microfilamerit cytoskeleton in the cell line transfected with pBK-CMV-HA-EBP50 was different from that found in the cell line transfected with empty vector. EBP50 expression enhanced microfilament cytoskeleton polymerization into compact thin filaments. Under the stimulation of PDGF, EBP50 migrated to the cell membrane from the cytosol together with microfilament cytoskeleton and co-localized there. Conclusion: EBP50 can change the distribution of microfilament cytoskeleton in cultured HeLa cells and can also bind the microfilament cytoskeleton to the cell membrane under the stimulation of PDGF. EBP50 may play a role in the proliferation and migration of tumor cells by influencing the distribution and localization of microfilament cytoskeleton.
出处 《中国肿瘤临床》 CAS CSCD 北大核心 2008年第20期1192-1195,共4页 Chinese Journal of Clinical Oncology
基金 国家自然科学基金(编号:30572183,30772573) 北京教委重点基金(编号:KZ200610025013) 北京市新世纪优秀人才支持计划(编号:NCEF-06-0184) 北京市优秀人才培养项目资助(编号:20071D0501800253)~~
关键词 微丝骨架 HELA细胞 EBP50 Microfilament cytoskeleton HeLa cell EBP50
  • 相关文献

参考文献10

  • 1Pan Y, Wang L, Dai JL. Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1)[J]. Breast Cancer Res, 2006, 8 (6) : R63.
  • 2Takahashi Y, Morales FC, Kreimann EL, et al. PTEN rumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling[J]. EMBOJ, 2006, 25(4): 910-920.
  • 3Shibata T, Chuma M, Kokubu A, et al. EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma[J]. Hepatology, 2003, 38 (1): 178-186.
  • 4Theisen CS, WahlJK 3rd, Johnson KR, et al. NHERF links the N-cadherirdcatenin complex to the platelet-derived growth factor receptor to modulate the actin cytoskeleton and regulate cell motility [J]. Mol Biol Cell, 2007, 18(4): 1220-1232.
  • 5Cardone RA, Bagorda A, Bellizzi A, et al. Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines[J].Mol Biol Cell, 2005,16 (7): 3117-3127.
  • 6Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling[J]. Physiol Rev, 1998, 78 (3): 763-781.
  • 7Wheeler D, Sneddon WB, Wang B, et al. Nt-IERF-1 and the cytoskeleton regulate the traffic and membrane dynamics of G prorein-coupled receptors[J], j Biol Chem, 2007, 282(34): 25076-25087.
  • 8Huang ZJ, Haugland RP, You WM, et al. Phallotoxin and actin binding assay by fluorescence enhancement[J]. Anal Biochem, 1992, 200(1): 199-204.
  • 9Cole BK, Curto M, Chart AW, et al. Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing[J]. Mol Cell Biol, 2008, 28(4): 1274-1284.
  • 10Murthy A, Gonzalez-Agosti C, Cordero E, et al. NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins[J].J Biol Chem, 1998, 273(3): 1273-1276.

同被引文献28

  • 1BoSong,Jian-WuTang,BoWang,Xiao-NanCui,LiHou,LuSun,Li-MinMao,Chun-HuiZhou,YueDu,Li-HuiWang,Hua-XinWang,Ren-ShuZheng,LeiSun.Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip[J].World Journal of Gastroenterology,2005,11(10):1463-1472. 被引量:19
  • 2刘继红,蔡学泳,何其华.细胞骨架的激光共焦研究技术[J].中国医学装备,2005,2(6):49-51. 被引量:8
  • 3袁聿军.细胞骨架的基本成分与功能[J].生物学教学,2006,31(4):5-8. 被引量:12
  • 4Lorette J. Immunocytochemistry methods and protocols [M]. 2nd. Totowa: Human Press, 1999:143-155.
  • 5St-Laurent J, Boulay M E, Prince P, et al. Comparison of cell fixation methods of induced sputum specimens: an immunocyto- chemical analysis [J]. J Immunol Methods, 2006, 308 (1-2) 36-42.
  • 6Hofmann I, Schnolzer M, Kaufmann I, et al. Symplekin, a con- stitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes [J]. Mol Biol Cell, 2002,13 (5) : 1665-1676.
  • 7Veitch G I, Gittens J E, Shao Q, et ai. Selective assembly of con- nexin 37 into heterocellular gap junctions at the oocyte/granulosa cell interface[J]. J Cell Sci, 2004, 117(Pt13): 2699-2707.
  • 8Kelkar R L, Dharma S J, Nandedkar T D. Expression of Fas and Fas ligand protein and mRNA in mouse oocytes and embryos [J]. Reproduction, 2003,126 (6) : 791-799.
  • 9Grounds M D. Age-associated changes in the response of skeletal muscle cells to exercise and regeneration[J]. Ann N Y Acad Sci, 1998,854:78-91.
  • 10McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997,387 (6628) : 83-90.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部