摘要
Numerical simulation of TNT underwater explosion was carried out with AUTODYN soft-ware. Influences of artificial viscosity and mesh density on simulation results were discussed. Deto-nation waves in explosive and shock wave in water during early time of explosion are high frequency waves. Fine meshes (less than 1 mm) in explosive and water nearby, and small linear viscosity co-efficients and quadratic viscosity coefficients (0.02 and 0.1 respectively, 1/10 of default values) are needed in numerical simulation model. According to these rules, numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula. Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.
Numerical simulation of TNT underwater explosion was carried out with AUTODYN software. Influences of artificial viscosity and mesh density on simulation results were discussed. Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves. Fine meshes (less than 1 mm) in explosive and water nearby, and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively, 1/10 of default values) are needed in numerical simulation model. According to these rules, numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula. Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.