期刊文献+

LDPC码量化译码仿真性能分析 被引量:1

Performance analysis of quantization decoding of LDPC codes
下载PDF
导出
摘要 主要分析LDPC码在具体实现过程中,改用最小和译码算法,并考虑硬件实现数据的量化级别、迭代过程中的限幅等因素,要求译码器在满足译码误码率的要求下,硬件的复杂度最低。 The thesis studies Min-Sum algorithm in the reality of LDPC codes and considers some effects such as quantization level and amplitude limit. Acquired the coder is simplest under the condition of the bit error rate.
出处 《舰船科学技术》 北大核心 2008年第B11期112-115,共4页 Ship Science and Technology
关键词 低密度奇偶校验 光正交码 和积译码算法 最小和译码算法 low-density parity-check (LDPC) optical orthogonal code sum-product algorithm min-Sum algorithm
  • 相关文献

参考文献8

  • 1Gallager R G. Low-Density Parity-Check Codes[ D]. Cambridge, MA : MIT Press, 1963.
  • 2MacKay D J C. Good error correcting codes based on very sparse matrices[J]. IEEE Trans. Inform. Theory,1999, 45:399 -431.
  • 3MacKay D J C,Neal R M. Near Shannon limit performance of low-density parity-check codes [ J ]. Electron, 1996,32 : 1645 - 1646.
  • 4Richardson T J, Urbanke R. The capacity oflow-density parity-check codes under message-passing decoding [ J ]. IEEE Trans. Inform. Theory,2001,41.
  • 5Richardson T, Shokrollahi A,Urbanke R. Design ofcapaci- ty-approaching irregular low-density parity check codes [ J]. IEEE Trans. on Inform. Theory,2001,47:619 - 637.
  • 6Wiberg N. Codes and Decoding on General Graphs. Dissertation [ D ]. Sweden Linkoping University, 1996.
  • 7Salehi Chung J A, Wei F K. Optical orthogonal codes design, analysis and applications [ J]. IEEE Trans. Inform. Theory, 1989,35 ( 3 ) :595 - 604.
  • 8Gennian ge, Jianxing Yin. Constructions for optimal( v,4, 1 ) optical orthogonal codes[ J ]. IEEE trans on Information Theory ,2001,47 ( 11 ) :2998 - 3004.

同被引文献6

  • 1Gallager R G. Low-density parity-check codes [ J ]. IEEE Transactions on Information Theory. 1962.8 ( 1 ) : 21 - 28.
  • 2MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes [ J]. Electronics Letters, 1997, 33 (6) :457 - 458.
  • 3国家广播电影电视总局.GB206002—2006数字电视地面广播传输系统帧结构、信道编码和调制[s].北京:中国标准出版社,2006.
  • 4Kschischang F R, Frey B J, Loeliger H A. Factor Graphs and the Sum-Product Algorithm [ J 1. IEEE Transactions on Infor- mation Theory, 2001,47 ( 2 ) : 498 - 519.
  • 5The MathWorks, Inc. Fixed-Point Toolbox User's Guide [ EB/ OL]. U. S. : The MathWorks, Inc. , 2008. http : J/www. math- works, com/access/helpdesk/help/pdf _ doc/fixedpoint/FP- TUG. pdf.
  • 6魏明魁.LDPC码的一种改进的Min-Sum解码算法[J].中国电子商情(通信市场),2007(10):155-159. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部