摘要
提出了一种新的基于分类模式识别的图像编码方案,基本思想是:1)先利用模式识别对图像进行预测,然后进行DCT编码;2)将图像分为高频和低频2个区域分别进行模式库的训练,以提高图像预测效果.实验表明,与基于未分类模式识别的图像编码算法相比,所提算法具有更好的预测编码性能,在压缩比为30∶1时,重建图像的平均峰值信噪比PSNR有1.3 dB的改善.
A new image coding algorithm based on classified pattern recognition is proposed. It uses pattern recognition to predict input image, then dose DCT coding on the predicting error image. To improve performance of prediction, a classified SOM algorithm for pattern library training is proposed. Experimental results show that the porposed algorithm has better coding performance than basic coding algorithm based on pattern recognition, with compression ratio is 30: 1, improvement of PSNR is about 1.3 dB using Lena image.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期491-493,共3页
Journal of Beijing Normal University(Natural Science)