期刊文献+

高功率半导体激光器线阵列的波长锁定技术 被引量:3

Wavelength locked high power semiconductor laser linear array
下载PDF
导出
摘要 高功率半导体激光器光谱随温度和工作电流的变化比较大,光谱线宽比较宽,这些缺点直接限制了其实际应用。因此,高功率半导体激光器波长稳定技术的研究是激光领域的一个重要研究方向。对波长稳定技术进行研究。实验用体布拉格光栅(VBG)作为反馈元件与高功率半导体激光器线阵列,构成可以对其波长进行锁定的外腔激光器。分析了外腔激光器的波长锁定效果与高功率半导体激光器工作电流、冷却温度、工作电流的占空比和"smile"现象等因素的关系。研究结果表明,高功率半导体激光器的工作电流、冷却温度、工作电流的占空比会影响其激射波长,当激射波长与VBG的布拉格波长差值小于3.0nm时,可以得到较好的波长锁定效果,而阵列本身的"smile"现象对其波长锁定的影响不大。 High-power laser diodes (HPLD) spectral linewidth is relatively broad (approximately 2-4 nm). The wavelength shifts with temperature (by approximately 0.3 nm/K) and changes with current, and the beam quality is poor. Therefore, research on the thermal characteristics and wavelength stabilization of HPLD becomes one of the most important topics in the field. An external cavity laser was built using Volume Bragg Grating as feedback element and high power semiconductor linear array to lock it's stimulated wavelength. The relationship was analyzed among the wavelength locked and it's operational current, cooling temperature, duty cycle of the current and “smile”. The results indicate that the stimulated wavelength is influenced by the operational current, cooling temperature and the duty cycle. Besides the wavelength locked is better when the wavelength difference between the free running and the VBG Bragg wavelength is smaller than 3.0 nm, while wavelength locked wasn't influenced by it's “smile”.
出处 《红外与激光工程》 EI CSCD 北大核心 2008年第5期822-825,共4页 Infrared and Laser Engineering
基金 大功率半导体激光器稳频技术的研究(05QMH1414)
关键词 波长锁定 半导体激光器线阵列 体布拉格光栅 外腔 Wavelength locked Semiconductor laser linear array Volume Bragg Grating External cavity
  • 相关文献

参考文献2

二级参考文献4

共引文献27

同被引文献33

  • 1童杏林,文昌山,朱小龙,王夏,纪涛,冷卓燕.微型化光纤法布里-珀罗传感器腔长一致性的控制研究[J].光子学报,2012,41(1):1-5. 被引量:2
  • 2楼祺洪,周军,朱健强,王之江.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138. 被引量:69
  • 3江鹏飞,周燕,谢福增.闪耀光栅外腔反馈压窄半导体激光器线宽技术的研究[J].光学技术,2006,32(6):869-870. 被引量:5
  • 4Blackburn D L. Temperature measurements of semiconductor devices -a review [C]//IEEE Semiconductor Thermal Measurement and Management Symposium, 2004: 70-80.
  • 5Kondow M, Kitatani T, Nakahara K, et al. Temperature dependence of lasing wavelength in a GalnNAs laser diode [J]. IEEE Photonics Technology Letters, 2000, 12(7): 777-779.
  • 6Ryu H Y, Ha K H, Chae J H, et al. Measurement of junction temperature in GaN-based laser diodes using voltage- temperature characteristics [J]. Applied Physics Letters, 2005, 87(9): 093506.
  • 7Abdelkader H I, Hausien H H, Martin J D. Temperature rise and thermal rise-time measurements of a semiconductor laser diode[J]. Review of Scientific Instruments, 1992, 63(3): 2004-2007.
  • 8Wang W J, Lee T H, Choi J H, et al. Thermal investigation of GaN-Based laser diode package [J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(4): 637-642.
  • 9Szekely V. A new evaluation method of thermal transient measurement results [J]. Microelectronies Journal, 1997, 28(3): 277-292.
  • 10HUANG Yi-ze, YI Li, WANG Hai-fang, et al. Wavelength stabilization of a high-power uncooled dual FBG stabilized 980 nm semiconductor laser module [J]. Chinese Optics Letters, 201!, 9(3).. 031403.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部