期刊文献+

动态最小二乘支持向量机学习算法 被引量:3

Learning Algorithm of Dynamic Least Square Support Vector Machine
原文传递
导出
摘要 针对大样本集的训练问题和动态训练样本的模型更新问题,提出了动态最小二乘支持向量机学习算法。该算法充分利用已建好的模型,逐渐加入新样本,并可删除位于任何位置的非支持向量,避免了矩阵求逆运算,保证了算法的高效率。大坝变形及电离层延迟两个时间序列的预报实例表明,该算法具有计算时间短、预报精度高的特点。 Aiming at solving the training problem of large scale sample sets and model modif- ying problem of dynamic training sets, the dynamic least square support vector machine method is presented. The novel method can take full advantage of the model which is built by incremental algorithm. Based on the updated model, the new samples can be added gradu ally, the non support vectors located in any position of the training set can be found and dele ted easily. The matrix inverse algorithm is avoided; then a high calculation efficiency can be obtained theoretically. Two examples, one is dam deformation prediction and the other is ionosphere delay prediction, show the excellent performance of the proposed algorithm in modeling time and prediction precision. All the samples indicate that the method proposed is superior than other methods at present.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第11期1122-1125,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40474003)
关键词 动态最小二乘支持向量机 在线时间序列预报 大规模学习问题 dynamic least square support vector machine (DLSSVM) on-line time seriesprediction large scale learning problem
  • 相关文献

参考文献5

二级参考文献17

  • 1王新洲,邓兴升.大坝变形预报的模糊神经网络模型[J].武汉大学学报(信息科学版),2005,30(7):588-591. 被引量:16
  • 2金永强,顾冲时,于鹏.变权组合预测模型在大坝安全监测中的应用[J].水电自动化与大坝监测,2006,30(5):60-62. 被引量:10
  • 3Vapnik V.N..The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 4Cherkassky V.,Mulier F..Learning From Data-Concepts,Theory and Methods.New York:John Wiley Sons,1998
  • 5Joachims T..Text Categorization with support vector machines:Learning with Many Relevant Features.In:Proceedings of the European Conference on Machine Learning (ECML),1998,137~142
  • 6Guyon I.,Weston J.,Barnhill S..Gene selection for cancer classification using support vector machines.Machine Learning,2002,46(1):389~422.
  • 7Kivinen J.,Smola A.,Williamson R..Online learning with kernels.In:Diettrich T.G.,Becker S.,Ghahramani Z.eds..Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002,785~793
  • 8Ralaivola L.et al..Incremental support vector machine learning:A local approach.In:Proceedings of the International on Conference on Artificial Neural Networks,Vienna,Austria,2001,322~329
  • 9Ruping S..Incremental learning with support vector machines.Dortmund University,Dortmund:Technical Report TR 18,2002
  • 10Martin M..On-line support vector machines for function approximation.Politecnica University,Catalunya,Spain:Technical Report LSI-02-11-R,2002

共引文献117

同被引文献31

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部