期刊文献+

2p^2阶3度点传递图 被引量:2

Cubic Vertex-transitive Graphs of Order 2p^2
下载PDF
导出
摘要 一个图称为点传递图,如果它的全自同构群在它的顶点集合上作用传递.本文证明了一个2p^2(p为素数)阶连通3度点传递图或者是Calyley图,或者同构于广义Petersen图P(p^2,t),这里t^2≡-1(modp^2). A graph is said to be vertex-transitive, if its automorphism group is transitive on its vertices. In this paper, we prove that a connected cubic vertex-transitive graph of order 2p^2(p a prime) is either a Cayley graph or isomorphic to the generalized Petersen graph P(p^2, t),where t^2 =-1(mod p^2)
作者 周进鑫
出处 《数学进展》 CSCD 北大核心 2008年第5期605-609,共5页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10571013).
关键词 点传递图 CAYLEY图 非Cayley点传递图 vertex-transitive graph Cayley graph non-Cayley vertex-transitive graph
  • 相关文献

参考文献12

  • 1Watkins, M.E., A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory, 1969, 6: 152-164.
  • 2Marusic, D., Cayley properties of vertex symmetric graphs, Ars Combin. Set.B, 1983, 16: 297-302.
  • 3Marusic, D., Vertex transitive graphs and digraphs of order p^k, Ann. Discrete Math., 1985, 27: 115-128.
  • 4McKay, B.D., Praeger, C.E, Vertex-transitive graphs which are not Cayley graphs I, J. Austral. Math. Soc. Ser.A, 1994, 56: 53-63.
  • 5McKay, B.D., Praeger, C.E., Vertex-transitive graphs which are not Cayley graphs Ⅱ, J. Graph Theory, 1996, 22: 321-334.
  • 6Miller, A.A., Praeger, C.E., Non-Cayley vertex-transitive graphs of order twice the product two odd primes, J. Algebra Combin., 1994, 3; 77-111.
  • 7Sarazin, M.L., A note on the generalized Petersen graph that are also Cayley graph, J. Combin. Theory Ser.B, 1997, 69: 226-229.
  • 8Nedela, R., Skoviera, M., Which generalized Petersen graphs are not Cayley graphs? J. Graph Theory, 1995, 19: 1-11.
  • 9Seress, A., On vertex-transitive non-Cayley graphs of order pqr, Discrete Math., 1998, 182: 279-292.
  • 10Feng Y.Q., On vertex-transitive graphs of odd prime-power order, Discrete MaSh., 2002, 248: 265-269.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部