期刊文献+

复合材料裂纹中心受增加载荷作用下的动态问题

Dynamic problems on crack center of composite materials subjected to increasing loads
下载PDF
导出
摘要 利用已建立的复合材料桥连的动态裂纹模型,将桥连处纤维用载荷代替。当裂纹扩展时,其纤维必将连续地开裂。通过复变函数论的方法,可以很容易地将所讨论的问题转化为Remann-Hilbert问题,而后一问题可以用通常的Muskhelishvili方法进行求解,并可以相当简单地得到问题的闭合解。采用自相似函数的途径,求得了扩展裂纹的坐标原点分别受到增加载荷Px/t、Pt3/x2作用下位移、应力和动态应力强度因子的解析解的一般表达式。利用这些解并采用叠加原理,就可以求得任意复杂问题的解。 By application of the built dynamic crack model of bridge in composite materials, bridging fiber section is substituted by loads. When a crack propagates, its fibers must break continuously. By the approaches of the theory of complex functions, the problems dealt with can be facilely translated into Remann-Hilbert problems which are solved by the usual Muskhelishvili's measure, and their closed solutions are acquired rather simple according to this technique. The general representations of analytical solutions on the displacements, stresses and dynamic stress intensity factors under the action of increasing loads Px/t, Pt3/x2situated at the origin of the coordinates of propagation crack, respectively, is attained by the methods of self-similar functions. After those analytical solutions are utilized by superposition theorem, the solutions to arbitrarily completed problems can be readily obtained.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2008年第5期671-673,共3页 Journal of Liaoning Technical University (Natural Science)
基金 黑龙江省自然科学基金重点资助项目(ZJG04-08) 中国博士后基金资助项目(2005038199)
关键词 复合材料 裂纹 桥连 自相似方法 解析解 composite materials crack bridge self-similar methods analytical solutions
  • 相关文献

参考文献7

  • 1Hagwan B, Agarwal Lawrence D, Browtman J.Analysis and performance of fiber composites[M]. Jhon Wiley & Sons. Inc.,1973.
  • 2吕念春,程靳,金琰,屈德志.复合材料中桥连问题的裂纹动力学模型[J].工程力学,2000,17(6):117-120. 被引量:7
  • 3胥红敏,吕念春,程靳.Ⅰ型动态裂纹二个扩展问题的位错分布函数[J].辽宁工程技术大学学报(自然科学版),2008,27(1):39-41. 被引量:4
  • 4LU N C, CHENG J, CHENG Y. H. A Dynamic Model of Bridging Fiber PuU-out of Composite Materials[J] .Mech. Res. Commun.2005, 32 ( 1):1-14.
  • 5JI M, ISHIKAWA H. Analysis of an internal central crack with bridging fibers in a finite orthotropic plate[J]. Int. J. Engng Sci. 1997,35(4):549-560.
  • 6Hoskins R EGeneralized functions[M]. Ellis Horwood, 1979.
  • 7Kanwal R P, Sharma D L.Singularity methods for elastostatics[J]. J. Elasticity, 1976,6(4):405-418.

二级参考文献14

  • 1沈观林,复合材料力学,1996年
  • 2王震鸣,复合材料力学和复合材料结构力学,1991年
  • 3程靳,工程力学,1985年,增刊,8页
  • 4刘锡礼,复合材料力学基础,1984年
  • 5Bibly B A, Eshelby J D. in Fracture.vol.l [M].H. Liebowitz, 1968:99-122
  • 6Lardner R W.Mathematical theory of dislocation and fracture[M]. University of Toronto Press, Toronto, 1974:150-195.
  • 7Billy B A, Cottrel A H, Swinden K H. The spread of plastic yield from a notch[M]. Proc. Roy. Soc. Series A, 1963,(272): 304-314.
  • 8N. I. Muskhelishvili. Some Fundamental Problems in the Mathematical Theory of Elasticity[M]. Nauka Moscow, 1968.
  • 9C. Atkinson. The Propagation of a brittle crack in anisotropic material. Int. J. Engng Sci. 1965,(3): 77-91.
  • 10Hoskins R F. Generalized functions[M]. Ellis Horwood, 1979.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部