摘要
利用一个时间变换,将二次系统(Ⅲ)n=0变为新系统(E)——它与二次系统(Ⅲ)n=0有相同的奇点O(0,0)和相同个数的包围O(0,0)的极限环,通过对系统(E)的研究,得到了二次系统(Ⅲ)n=0在O(0,0)外没有极限环的充分条件,由此,部分证明了叶彦谦在《多项式微分系统定性理论》中的一个猜想。
Through a time transformation, the quadratic system (Ⅲ)n=0 is changed into a new system (E), which has the same singular point 0(0,0) and the same number of limit cycles around 0(0,0) with the system (Ⅲ)n=0. and then, a sufficient condition of the non-existence of limit cycles around 0(0,0) is obtained for the quadratic system (Ⅲ)n=0. Moreover a conjecture proposed in "Qualitative Theory of Polynomial Differential System" edited by Ye Yan-qian is partially confirmed.
出处
《青岛大学学报(自然科学版)》
CAS
2008年第3期8-11,共4页
Journal of Qingdao University(Natural Science Edition)
关键词
二次系统
极限环
焦点量
不存在性
quadratic system
limit cycle
focal value
non-existence