摘要
对于一类具μ-Calderón-Zygmund核的振荡奇异积分算子,已经得到了它的Lp(Rn)(1<p<∞)有界性,并且利用权函数的性质,又证明了它的加权Lp有界结果。这里借助于Herz空间的分解理论,证明了此类推广的具-μCalderón-Zygmund核的振荡奇异积分算子在非齐次加权Herz空间的有界性。
The boundedness of a class of oscillatory singular integral with μ-Calderón-Zygmund kernel on Lp(Rn)(1〈p〈∞) was obtained. And by the property of weighted function, it was also obtained the weighted boundedness. The boundedness of the oscillatory singular integral with μ-Calderón-Zygmund kernel is proved using the decomposition theory of the Herz space in the inhomogeneous weighted Herz space.
出处
《青岛大学学报(自然科学版)》
CAS
2008年第3期18-21,共4页
Journal of Qingdao University(Natural Science Edition)