期刊文献+

具有Liouville可积的非线性微分-差分方程族及其守恒律

A Liouville Integrable Nonlinear Differential-Difference Equation and its Conservation Laws
下载PDF
导出
摘要 通过离散的零曲率表示导出了一个基于离散的矩阵谱问题的典型晶格孤子方程,同时证明了相应的晶格系统是Liouville可积的,进一步通过一个直接的办法给出了相应晶格系统的无穷多守恒律。 A lattice soliton equation is proposed as a typical lattice system in the hierarchy of lattice soliton equations by discrete zero curvature representation, which is derived from a discrete matrix spectral problem. The Liouville integrability for the corresponding lattice system is demonstrated. Moreover, infinitely many conservation laws of corresponding lattice system are obtained by a direct way.
出处 《青岛大学学报(自然科学版)》 CAS 2008年第3期26-30,40,共6页 Journal of Qingdao University(Natural Science Edition)
关键词 离散可积系统 迹恒等式 HAMILTON结构 LIOUVILLE可积 守恒律 discrete integrable systems trace identity Hamiltonion systems Liouville integrability conservation laws
  • 相关文献

参考文献2

二级参考文献3

  • 1TU Gui-zhang. On Liouville integrability of Zero Curature equation and the Yang hierarchy[J]. J, Phys. A: Math. Gen, 22(1989)2375-2392.
  • 2TU Gui-zhang. A trace identity and its application to the theory of discrete integrable systems[J]. J, Phys, A: Math, Gen,23(1990)3903-3922.
  • 3ZENG Yun-bo and Roueh-Wojeieehowski. Restricted flows of the Ablowitz- Ladik hierarchy and their Continuous limits[J]. Phys, A: Math. Gen 28(1995)113-134.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部